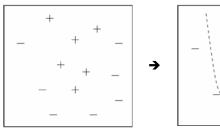
Support Vector Machines and Kernels

CS472/CS473 - Fall 2005

Outline

- · Transform a linear learner into a non-linear learner
- · Kernels can make high-dimensional spaces tractable
- · Kernels can make non-vectorial data tractable

Non-Linear Problems



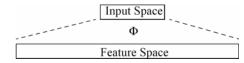
Problem:

- some tasks have non-linear structure
- no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?

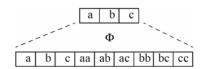
Extending the Hypothesis Space

Idea: add more features



→ Learn linear rule in feature space.

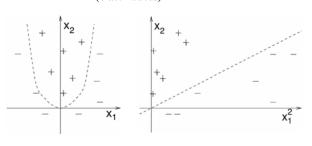
Example:



The separating hyperplane in feature space is degree two polynomial in input space.

Example

- Input Space: $\vec{x} = (x_1, x_2)(2 \text{ attributes})$
- Feature Space: $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ (6 attributes)



Dual (Batch) Perceptron Algorithm

Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\},$ $I \in [1, 2, ..]$

Dual Algorithm:

Primal Algorithm:

• $\forall i \in [1..n]$: $\alpha_i = 0$

• $\vec{w} = \vec{0}$, k = 0

repeat

repeat

- FOR *i*=1 TO *n*

* IF $y_i \left(\sum_{j=1}^n \alpha_j y_j (\vec{x}_j \cdot \vec{x}_i) \right) \leq 0$

- FOR i=1 TO n $* \text{ IF } y_i(\vec{w} \cdot \vec{x}_i) \leq 0$

 $\alpha_i = \alpha_i + 1$

 $\cdot \ \vec{w} = \vec{w} + y_i \vec{x}_i$

* ENDIF

* ENDIF

- ENDFOR

- ENDFOR

• until I iterations reached

until I iterations reached

Dual SVM Optimization Problem

• Primal Optimization Problem

minimize:
$$P(\vec{w},b,\vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_{i}$$
 subject to:
$$\forall_{i=1}^{n} : y_{i} [\vec{w} \cdot \vec{x}_{i} + b] \ge 1 - \xi_{i}$$

$$\forall_{i=1}^{n} : \xi_{i} > 0$$

• Dual Optimization Problem

maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$$
 subject to:
$$\sum_{i=1}^n y_i \alpha_i = 0$$

$$\forall_{i=1}^n : 0 \le \alpha_i \le C$$

• **Theorem:** If w^* is the solution of the Primal and α^* is the solution of the Dual, then $\vec{w}^+ = \sum_{i=1}^{n} \alpha_i^* y_i \vec{z}_i$

Kernels

Problem: Very many Parameters! Polynomials of degree p over N attributes in input space lead to attributes in feature

Solution: [Boser et al.] The dual OP depends only on inner products => Kernel Functions

$$K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b})$$

Example: For $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ calculating $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$ computes inner product in feature space.

→ no need to represent feature space explicitly.

SVM with Kernel

Training:

maximize:
$$D(\vec{a}) = \sum_{i=1}^n a_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j)$$

Classification:
$$h(\vec{x}) = sign\left(\left[\sum_{i=1}^{n} \alpha_i y_i \Phi(\vec{x}_i)\right] \cdot \Phi(\vec{x}) + b\right)$$

= $sign\left(\sum_{i=1}^{n} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b\right)$

New hypotheses spaces through new Kernels:

• Linear: $K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b}$

Polynomial: $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d$

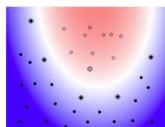
Radial Basis Function: $K(\vec{a}, \vec{b}) = exp(-\gamma[\vec{a} - \vec{b}]^2)$

Sigmoid:

Examples of Kernels

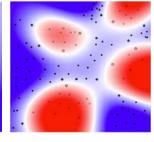
Polynomial

$K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$



Radial Basis Function

$$K(\vec{a}, \vec{b}) = exp(-\gamma[\vec{a} - \vec{b}]^2)$$



Kernels for Non-Vectorial Data

- **Applications with Non-Vectorial Input Data** → classify non-vectorial objects
 - Protein classification (x is string of amino acids)
 - Drug activity prediction (x is molecule structure)
 - Information extraction (x is sentence of words)
 - Etc.
- Applications with Non-Vectorial Output Data → predict non-vectorial objects
 - Natural Language Parsing (y is parse tree)
 - Noun-Phrase Co-reference Resolution (y is clustering)
 - Search engines (y is ranking)
- **→** Kernels can compute inner products efficiently!

Properties of SVMs with Kernels

- Expressiveness
 - Can represent any boolean function (for appropriate choice of kernel)
 - Can represent any sufficiently "smooth" function to arbitrary accuracy (for appropriate choice of kernel)
- · Computational
 - Objective function has no local optima (only one global)
 - Independent of dimensionality of feature space
- · Design decisions
 - Kernel type and parameters
 - Value of C