Perceptrons and Optimal Hyperplanes

CS472/CS473 - Fall 2005

Example: Majority-Vote Function

- Definition: Majority-Vote Function $f_{majority}$
 - N binary attributes, i.e. $x \in \{0,1\}^N$
 - If more than N/2 attributes in x are true, then $f_{\text{majority}}(x)\!\!=\!\!1,$ else $f_{\text{majority}}(x)\!\!=\!\!-1.$
- How can we represent this function as a decision tree?
 - Huge and awkward tree!
- Is there an "easier" representation of $f_{majoritv}$?

Example: Spam Filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

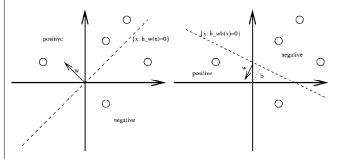
- Instance Space X:
 - Feature vector of word occurrences => binary features
 - N features (N typically > 50000)
- Target Concept c:
 - Spam (+1) / Ham (-1)
- Type of function to learn:
 - Set of Spam words S, Set of Ham words H
 - Classify as Spam (+1), if more Spam words than Ham words in example.

Linear Classification Rules

- Hypotheses of the form

 unbiased: $h_{\vec{w}}(\vec{x}) = \begin{cases} 1 & w_1x_1 + ... + w_Nx_N > 0 \\ -1 & else \end{cases}$ biased: $h_{\vec{w},b}(\vec{x}) = \begin{cases} 1 & w_1x_1 + ... + w_Nx_N + b > 0 \\ -1 & else \end{cases}$ Parameter vector w, scalar b
- Hypothesis space H
 - $H_{unbiased} = \{h_{\vec{w}} : \vec{w} \in \Re^N\}$
 - $H_{biased} = \{ h_{\vec{w},b} : \vec{w} \in \Re^N b \in \Re \}$
- Notation
 - $-w_1x_1+...+w_Nx_N=\vec{w}\cdot\vec{z}$ and $sign(a)=\left\{egin{array}{ccc} 1 & a>0 \ -1 & else \end{array}
 ight.$
 - $h_{\vec{w}}(\vec{x}) = sign(\vec{w} \cdot \vec{x})$
 - $h_{\vec{w},b}(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$

Geometry of Hyperplane Classifiers



- Linear Classifiers divide instance space as hyperplane
- One side positive, other side negative

(Batch) Perceptron Algorithm

Input: $D = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}, \ \eta \in \Re, \ I \in [1, 2, ..]$

Algorithm:

- $\vec{w}_0 = \vec{0}$, k = 0
- repeat
 - FOR i=1 TO n
 - * IF $y_i(\vec{w_k}\cdot\vec{x_i}) \leq$ 0 ### makes mistake
 - $\cdot \vec{w}_{k+1} = \vec{w}_k + \eta y_i \vec{x}_i$
 - $\cdot k = k + 1$
 - * ENDIF
 - ENDFOR
- until I iterations reached

	x_1	x_2	y
$\vec{x}_1 = ($	1	2)	$y_1 = 1$
$\vec{x}_2 = ($	2	1)	$y_2 = 1$
$\vec{x}_3 = ($	-1	-1)	$y_3 = -1$
$\vec{x}_{\bullet} = 0$	_1	1)	214 1

