CS472 Foundations of Artificial Intelligence

Prelim II November 22, 2003

Name:					
Netid:					
Instructions: Yeare 4 sets of que		ave 50 minutes to complete this exam. The exam is ns.	s a closed-boo	k exam. T	Гhere
	#	topics	score	max	score
	1	reinforcement learning		/	25
	2	version spaces		/	20
	3	FOL and the resolution algorithm		/	20
	4	decision trees and neural networks		/	35
	Tota	al score:		/	100

	inforcement Learning (25 points) Consider reinforcement learning in a known, accessible onment using the methods below:
1.	direct utility estimation (also known as naive updating or LMS updating)
2.	dynamic programming
3.	temporal difference learning
1.	(11 pts) Show the state utility update equation, U , for method (1), direct utility estimation . Be sure to define all symbols.
2.	(8 pts) Show the state utility update equation(s), U , for method (2), dynamic programming . Be sure to define all symbols.
3.	(6 pts) Which of the three methods above do not require a model of the environment?

2 Version Spaces (20 points) Assume that you want to be able to predict whether or not a student will do well on a prelim. In addition, assume that you have determined that success on a prelim depends on three factors: the *professor* giving the test, what you eat for *breakfast* on the day of the prelim, and the amount of *sleep* that you get the night before the prelim. Further assume that each of these features has a fixed set of possible values:

```
professor: {cardie, pingali, schneider}
breakfast: {cheerios, pop-tarts, bagel}
sleep: {lots, little, 8-hours}
```

Apply the *version space algorithm* (i.e. the candidate elimination algorithm) to the following examples to determine the concept description for a *successful prelim*. Each example is labeled either **positive** (i.e. you do well on the prelim) or **negative** (i.e. you do poorly on the prelim). Show the resulting S and G sets after each example:

- 1. **positive:** < *schneider, cheerios, 8-hours*>
- 2. **negative:** < cardie, bagel, lots>
- 3. **positive:** < pingali, bagel, 8-hours>
- 1. (4 pts) After example 1:

2. (5 pts) After example 2:

3. (5 pts) After example 3:

4.	(2 pts) Based on your work, what a	advice would you give	to a student taking a prelim?
5.	(4 pts) List two critical inadequacion	es of the version space	algorithm.

3 First-Order Logic and the Resolution Proof Procedure (25 points)

If a course is easy, some students are happy. If a course has a prelim, no students are happy.

1. (6 pts) Represent the above statements using *first-order logic*. Some useful predicates will be: *easy, happy, has-prelim, student*.

2. (9 pts) Convert the first-order logic statements above into a knowledge base in conjunctive normal form.

3. (10 pts) Given the above knowledge base, prove using *resolution by refutation* that, *if a course has a prelim, the course isn't easy.* (A refutation proof is a proof by contradiction. To obtain full credit, all steps must be labeled so that it's clear what's being resolved with what.)

To help you out, you can assume that the **negation** of the statement to be proved results in the following sentences when converted to conjunctive normal form (where S2 is a skolem constant):

- (3a) has-prelim (S2)
- (3b) easy (S2)

4 Decision Trees and Neural Networks (30 points)

- 1. (5 pts) Consider the learning problem from the Version Space question and the following examples:
 - (a) **positive:** < schneider, cheerios, 8-hours>
 - (b) **negative:** < cardie, bagel, lots>
 - (c) **positive**: < pingali, bagel, little>

Explain briefly the decision tree that would result if these examples were presented to a decision tree induction system like ID3. (No equations should be necessary.)

2. (5 pts) (True/False) Decision trees produced by the ID3 algorithm never test the same attribute twice along one path. (Briefly explain your answer.)

3. Consider a two-layer feedforward artificial neural network with two inputs a and b, one hidden unit c, and one output unit d. This network has five weights (w_{ac} , w_{bc} , w_{0c} , w_{cd} , w_{0d}), where w_{0x} represents the threshold weight for unit x. Assume that these **weights** are initialized to (.1, .1, .1, .1). Assume a **learning rate** of 0.3. Also assume a **sigmoid** threshold function f. Use the following approximate values for f where necessary below:

x	f(x)
$-5.0 \le x < -2.5$	0.001
$-2.5 \le x < -0.05$	0.20
$-0.05 \le x < 0$	0.49
0	0.5
$0 < x \le 0.05$	0.51
$0.05 < x \le 2.5$	0.80
$2.5 < x \le 5.0$	0.999

Consider the following training example for the network described above: $a=1,\,b=0,\,d=1.$

(a) (6 pts) Show the **output** for each node during the feedforward pass.

(b) (9 pts) Show the **error** for each node as it would be computed using the Backpropagation algorithm.

(c) (5 pts) What is the primary goal of the backpropagation algorithm?