340

Hill Climbing Beats Genetic Search
on a Boolean Circuit Synthesis Problem of Koza’s

Kevin J. Lang
NEC Research Institute
Princeton, NJ 08542
kevin@research.nj.nec.com

Abstract

An experiment described in chapter 9 of
the book “Genetic Programming” shows that
the method is more efficient than random-
generate-and-test on a boolean circuit syn-
thesis task. Here we show that hill climbing
is more efficient than genetic programming
on this problem. It is interesting to note
that our improved results were obtained by
mating the current best hypothesis with com-
pletely random S-expressions, rather than
with members of a high-fitness population.
Perhaps, for this task, fragments of high fit-
ness individuals have no special value when
transplanted into other individuals. ‘

1 Introduction

The book “Genetic Programming” demonstrates the
method’s generality by exhibiting solutions to a vari-
ety of problems. However, it provides little evidence
for believing that GP is better than the many exist-
ing algorithms for general learning and optimization,
much less than the specialized algorithms that exist for
many of the various problems. Genetic programming
has attracted a large following anyway, probably be-
cause it comes with an appealing story about how the
power of evolution is being harnessed by the technique.
A crucial piece of this story is the idea that the pool of
highly fit individuals selected from earlier generations
constitutes a valuable genetic resource that facilitates
the creation of even more fit individuals in the future.

This paper describes an experiment that casts doubt
not only on the relative efficiency of genetic program-
ming, but also on the validity of the story about the
value of the high-fitness gene pool. The testbed for
the experiment is the boolean circuit synthesis task de-
scribed in chapter 9 of “Genetic Programming”. This
task was selected by the book’s author as the ground

on which to battle an earlier batch of critics who
pected that genetic programming was nothing m
than a disguised version of the random-genera
test algorithm (henceforth called RGAT). Extens
testing on the circuit synthesis task showed that
netic programming is more efficient than RGAT
that the advantage enjoyed by genetic progran
increases on target functions that are more difficu
learn. ' ' -

We observed that the margin of victory over RG.
was small in this experiment, and were thus moti
to compare GP with the next weakest search m
hill climbing. We found hill climbing to be more
cient than GP, with the advantage increasing to ab:
a factor of 40:1 on the hardest problem instances. (
version of the hill climbing algorithm is closely relz
to GP. The main difference is that our algorith

ates new hypotheses by crossing the current cham
with totally random individuals, while GP gene
them by crossing pairs of individuals drawn f
high-fitness pool. Evidently, the high-fitness pe
worse than random source of components for bu
improved individuals. .

2 Genetic Programming

Genetic Programming is a learning method
searches a hypothesis space of tree-structured cir
(represented as Lisp S-expressions), looking for
cuit that computes a given target function. Eac]
cuit in the space accepts input values through it
nodes, processes them using basis functions
ated with its interior nodes, and emits an answer
its root node. The hypothesis space is searche
ing a genetic algorithm: First, an initial popul
is drawn from some probability distribution ove
space. Then successive generations of circuits ar
ated by selecting the best trees! from precedin;

1i.e. the circuits that come closest to computi
desired function.

AT R

erations. The number of copies that are made of a
selected tree is an increasing function of the tree’s fit-
ness. In addition, some of the selected trees are fed
into a crossover operation to create new trees that are
mixtures of their parents rather than strict copies. The
crossover operation consists of selecting a random node
in each of the two parents, and then swapping the sub-
trees rooted at those two nodes. The overall procedure
for constructing a new generation is somewhat compli-
cated, and is controlled by several adjustable parame-
ters. The reader is referred to “Genetic Programming”
for the parameter settings employed during the GP vs
RGAT comparison.

3 GP vs RGAT

In this section we summarize the experimental setup
and results reported in chapter 9 of “Genetic Program-
ming”. The benchmark problem was the task of find-
ing logic circuits to compute the various boolean func-
tions of 3 inputs. There are 256 such functions, but a
set of 80 representatives covered the variety of the full
set. The hypothesis space for the experiment was the
set of tree-structured circuits in which a leaf accesses
one of the 3 input values and each internal node com-
putes one of the functions (AND, OR, NAND, NOR).

The first search method was RGAT. Random candi-
date circuits were drawn from the uniform distribution
over 20-gate circuits. Each candidate was tested to
determine whether it computed the desired function.
The figure of merit for this technique was the recip-
rocal of the probability of randomly drawing a circuit
which computes the target function, or in other words,
the ratio of the number of candidates that were exam-
ined to the number of solutions that were found.

The second method was genetic programming. An
initial population of 50 candidates was drawn from
the uniform distribution over 20-gate circuits. Then,
somewhere between 0 and 24 additional generations
were constructed using the genetic algorithm outlined
in the previous section of this paper. The search was
terminated whenever a generation contained a solu-
tion, or when the limit of 25 generations was exceeded
without finding a solution. Many trials of this proce-
dure were performed, and the figure of merit was the
ratio of candidates to solutions, as measured during
the complete set of trials.

‘T'he results of this experiment are plotted in figure 1.
tlach of the points marked with a “4” in the figure
shows the performance of GP and RGAT on one of
the 80 target functions. The & coordinate of each point
represents the ratio of candidates to solutions for GP,
while the y coordinate represents the same information
for RGAT. The dotted line running diagonally through
the middle of the figure represents equal performance

Hill Climbing Beats Genetic Scarcli 341

for the two algorithms. Since most of the points le
above this line, RGAT was less efficient than GP.

4 Hill Climbing

We applied the following hill-climbing algorithm to the
circuit synthesis task: remembering the best circuit
ever seen, repeatedly generate new circuits and com-
pare them with the best one. A candidate becomes
the new best circuit if it is at least as good as the old
one. On alternate steps the candidate is either a ran-
dom circuit or a hybrid circuit obtained by crossing
the best circuit with a random circuit.

In our experiment, all random sampling was from the
same distribution that was employed in the earlier
experiment for RGAT, namely the uniform distribu-
tion over 20-gate circuits.? Hybrid circuits were con-
structed with the same cross-over operation that had
been employed by GP.

We ran 100 trials on each of the 80 target functions.
Each trial was halted when a solution was found, or
when 1250 candidates had been examined without
finding a solution.® The figure of merit was the ra-
tio of candidates to solutions during the complete set
of trials for a given target function.

Our results for the various target functions are plotted
as small diamonds in figure 1. The z coordinate of a
point represents the ratio of candidates to solutions
for GP, while the y coordinate represents the same
ratio for hill-climbing. Most of the points lie below
the dotted line, thus showing that hill climbing is more
efficient than genetic programming on this task. The
superiority of hill-climbing appears to increase with
target function difficulty. The mean improvement on
the five hardest targets was by a factor of 42.

5 Interpretation and Speculation

Our hill climbing algorithm is closely related to the
RGAT and GP algorithms that were employed in the
earlier experiment. Fully half of our candidate cir-
cuits were random, drawn from the same distribution
that yielded poor performance for RGAT. While this
seems like a waste of resources, we needed to have

some mechanism for escaping from the local optima

that would have resulted from keeping only one good
circuit around at a time. We believe that these aspects

2Sampling from this distribution is a bit tricky. We
verified that our implementation was the same as in the
earlier experiment by generating millions of circuils and
comparing the resulting histogram with table 9.3 in the
book.

3This rule corresponds to the 25-generation limit in the
earlier experiment.

Ao b

342 Lang

1e+07 . — v — T : —r—
random generate and test + +
genetic programming -----
hill climbing A
1e+06 | -
3 . .+ .
: 4
F Tk
& 100000 | . . -
»&- +
g »
5 " T o
‘c 10000 |]
.§. [et R 3 ¢ o * 1
=2 o, ® ®
a #%’:’ o3 Po°
g V. 1
g 1000 & -
- ,""“‘ L 4
] Pt ¢
T PR o
G
S 100 | fx E
(3
~ %
10 fo." .
b
P .] . P | A el " P |
10 100 1000 10000 100000 1e+06

candidates per solution for GP

Figure 1: Each point in this figure shows how the efficiency of an algorithm compared with that of GP on one
of the 80 target functions. Points lying above the dotted line indicate that more candidates had to be examined
by the alternative method than by GP, while points lying below the dotted line indicate that fewer candidates

were required.

of our algorithm are a disadvantage when compared to

GP.

Our remaining candidates were generated by crossing
our one good circuit with completely random circuits,
again drawn from the distribution that yielded poor
performance for RGAT. By comparison, GP gener-
ated new candidates by crossing pairs of good circuits
from the previous generation. Since we found solutions
much faster than GP did, apparently the high-fitness
population maintained by GP was a worse than ran-
dom source of components for building improved in-
dividuals. How could that be? If fragments of high
fitness individuals have no special value when trans-
planted into other individuals, then relying on a small
high-fitness population as a source of new genes confers
no advantage, but has the disadvantage of restricting
the variety of new individuals.

We note that the earlier study included a limited ex-
periment on the effect of larger population sizes on the
learning of target function 150. It was found that every

increase in the population size yielded a performance
increase. The best reported result was a candidate to
solution ratio of 20285 using a population size of 1000
Our candidate to solution ratio for that function was
12053. In a sense, our population size is infinite, since
the random tree generator provides an effectively un
limited number of new trees to mate with. Clearly
these random trees have no special value as a gene
source. We suspect that the same thing is true for the
trees in the high-fitness pool employed by GP.

6 References

John Koza, “Genetic Programming” , MIT Press, 1992,
pp. 205-236.

Hill Climbing Beats Genetic Search 343

target | RGAT GP HC target RGAT GP HC

0 6.76 6.75 9.22 159 5324.8 3015.0 1228.7
255 6.76 6.74 9.14 96 5417.1 2959.0 1247.8
85 31.4 42.3 35.6 9 6418.5 4201.0 1739.5
240 31.8 45.1 28.7 212 7272.7 4338.0 1539.2
119 84.0 141.0 53.6 193 7331.4 4836.0 2037.4
192 85.1 153.0 | 64.7 190 7513.1 4585.0 1887.7
17 85.2 138.0 59.6 77 7674.6 3970.0 1433.1
252 85.8 150.0 70.0 111 7686.4 4694.0 1993.7

1 106.3 156.0 | 110.9 144 7716.0 3796.0 1368.8
128 105.3 162.0 | 112.6 122 7861.6 5175.0 1861.1
127 106.4 192.0 96.6 133 8064.5 5105.0 1518.5
245 105.5 180.0 74.1 118 8216.9 6006.0 1809.4
254 105.8 171.0 | 122.3 164 9861.9 5482.0 2372.6
80 106.5 179.0 72.0 67 10559.7 6683.0 2201.5
16 127.8 206.0 | 129.3 91 10570.8 6263.0 2000.7
253 1284 227.0 98.0 230 10649.6 6581.0 | 2541.9
64 129.1 211.0 | 106.9 229 11350.7 5586.0 1271.8
247 12904 233.0 | 100.8 98 11737.1 6057.0 1588.8
200 365.6 522.0 | 234.1 26 11990.4 5910.0 1474.8
87 367.9 513.0 | 1924 157 12048.2 5410.0 1462.0
21 368.8 488.0 [191.0 126 16155.1 12877.0 3370.8
236 370.4 504.0 | 197.0 129 17094.0 15068.0 2741.3
213 397.2 495.0 | 193.7 189 20202.0 14176.0 4945.0
205 407.6 539.0 | 227.5 24 20366.6 11062.0 3904.8
84 408.0 564.0 | 253.1 149 35461.0 11432.0 3965.6
112 412.1 575.0 | 246.5 30 35587.2 13140.0 3371.5
81 507.4 674.0 | 264.8 106 40983.6 11950.0 2846.0
117 508.5 627.0 | 256.7 169 42918.5 18510.0 3161.8
244 509.8 641.0 | 266.5 101 62111.8 16013.0 6240.4
162 511.7 664.0 | 298.2 154 84033.6 15578.0 6763.5
58 3180.7 2946.0 | 813.9 22 192307.7 124225.0 | 4248.1
197 | 3188.8 2888.0 | 667.9 233 208333.3 33590.0 6471.3
53 3393.3 3264.0 | 951.9 104 285714.3 35335.0 | 4686.8
216 | 3409.5 2746.0 | 747.2 151 322580.6 49825.0 4023.7
23 4050.2 2204.0 | 717.0 146 416666.7 32900.0 6096.3
232 | 4093.3 2645.0 | 900.0 97 454545.5 55200.0 8567.4
102 | 4438.5 2694.0 | 527.4 107 625000.0 149520.0 | 5673.8
1563 | 4543.4 2391.0 [758.8 158 769230.8 249350.0 | 6865.9
20 5299.4 3051.0 | 1116.7 150 | 5000000.0 999750.0 | 12053.6
235 | 5313.5 2689.0 | 1070.2 105 > 1.0E7 1187225.0 | 20443.2

Figure 2: This table summarizes the performance of RGAT, GP, and hill climbing on 80 instances of the boolean
circuit synthesis problem. The target numbers are explained in chapter 9 of the book “Genetic Programming”.
The remaining columns show the number of candidates that were examined per solution by each of the three
algorithms. The RGAT and GP values were taken from tables 9.3 and 9.4 in the book. The hill climbing figures
are new.

i

