Connectionist Models of Learning
Neural Networks

Characterized by:

e A large number of very simple neuronlike processing

elements.

e A large number of weighted connections between the

elements.
e Highly parallel, distributed control.

e An emphasis on learning internal representations

automatically.

Slide CS472 — Artificial Neural Nets 1

Why Neural Nets?

Solving problems under the constraints similar to those of
the brain may lead to solutions to Al problems that would

otherwise be overlooked.

e Individual neurons operate very slowly.

massively parallel algorithms

e Neurons are failure-prone devices.

distributed representations

e Neurons promote approximate matching.

less brittle

Slide CS472 — Artificial Neural Nets 2

Neural Networks

Rich history, starting in the early forties.
(McCulloch and Pitts 1943)

Two views:
e Modeling the brain.
e “Just” representation of complex functions.
(Continuous; contrast decision trees.)

Much progress on both fronts.

Drawn interest from: Neuroscience, Cognitive science, Al,
Physics, Statistics, and CS / EE.

Slide CS472 — Artificial Neural Nets 3

Axonal arborization

Axon from another cell

\

Synapse

Dendrite

Nucleus

\/

Synapses

Cell body or Soma

Slide CS472 — Artificial Neural Nets 4

Learning, Massive Parallelism

There is evidence of learning — plasticity — at synapses.

Complexity arises out of connectivity: Neurons perform

highly parallel computation.

Idea: collection of simple cells leads to complex behavior:

thought, action, and consciousness

Slide CS472 — Artificial Neural Nets 5

Artificial Neural Networks

B~ Wi
Input Output
_ > !
Links Links

Input Activation
Function Function

Output

Slide CS472 — Artificial Neural Nets 6

Activation Functions

A g [Y= a;
+1 —_— +1 +1
t in; i in;
-1
(a) Step function (b) Sign function (c) Sigmoid function

Slide CS472 — Artificial Neural Nets 7

Slide CS472 — Artificial Neural Nets 8

Can Simulate Boolean Gates

AND OR NOT

Slide CS472 — Artificial Neural Nets 9

Perceptrons

I Wi O; lj W O
Input Output Input Output
Units Units Units Unit
Perceptron Network Single Perceptron

Slide CS472 — Artificial Neural Nets 10

Perceptron Learning Algorithm

Remarkable learning algorithm: (Rosenblatt 1960)
If function can be represented by perceptron,
then learning algorithm is guaranteed to quickly converge
to the hidden function!

Enormous popularity in early to mid 60’s.

But analysis by Minsky and Papert (1969) showed certain
simple functions cannot be represented (e.g. Boolean XOR).
Killed the field! (and possibly Rosenblatt (rumored)).

Slide CS472 — Artificial Neural Nets 11

Linearly Separable Functions Only

(c) Iy xor I,

Slide CS472 — Artificial Neural Nets 12

Learning Threshold Values

Slide CS472 — Artificial Neural Nets 13

Perceptron Learning

A perceptron can learn any linearly separable function,
given enough enough training examples.

Key idea: adjust weights till all examples correct.

Update weights repeatedly (epochs) for each example.

Slide CS472 — Artificial Neural Nets 14

High Level Algorithm

function NEURAL-NETWORK-LEARNING(examples) returns network

network « a network with randomly assigned weights
repeat
for each e in examples do
O + NEURAL-NETWORK-OUTPUT(network,)
T « the observed output values from e
update the weights in network basedon e, O, and T
end
until all examples correctly predicted or stopping criterion is reached
return network

Slide CS472 — Artificial Neural Nets 15

Weight Update Function

Single output O; target output for example 7.
Define error: Err=T-0
Now, just move weights in right direction!
If error is positive, then need to increase O.
Each input unit j contributes W; I; to total input.
if I; is positive, increasing IW; tends to increase O
if I; is negative, decreasing W; tends to increase O
So, use: W; <~ W;+a x I; X Err
Perceptron learning rule (Rosenblatt 1960). « is learning rat4.

Slide CS472 — Artificial Neural Nets 16

Rule is intuitively correct.
Gradient descent through weight space.
Surprise is proof of convergence.
Weight space has no local minima.

With enough examples, it will find the function.

(provided « not too large)

Explains early popularity.

Slide CS472 — Artificial Neural Nets 17

Consider learning the logical “or” function.
Our examples are:

example x_1 x_2 x_3 1
1 0 0 -1 0
2 0 1 -1 1
3 1 0 -1 1
4 1 1 -1 1

We'll use a single perceptron with three inputs
(1,29, z3) and single output (I).

Learning rate of 0.5.

Note artificial input z3 fixed at -1.

[Step-by-step walk-through is in separate handout.]

Slide CS472 — Artificial Neural Nets 18

Learning Majority Function of 11 Inputs

09 r

0.8 |

0.7 |

06| ../ Perceptron ——
Decision tree -+

% correct on test set

05 r

04 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Training set size

Slide CS472 — Artificial Neural Nets 19

Restaurant Data Set

L et Dl
% A TV LA TR T Y
09 mﬁ\%*’*Tﬂw*++**¢#‘+***fﬁ”* B
= . ,'t';ﬁf Y Y
) [
@ o
n 08 W Perceptron ——
g i Decision tree —+—
S o7t]
o 7 +
g |
S 06! 1
ES |
0.5 ft |
0.4

0 10 20 30 40 50 60 70 80 90 100
Training set size

Slide CS472 — Artificial Neural Nets 20

Complex Feedforward Nets for Classification

Feedforward, layered, fully connected

Marsha

Acquaintance

Cs\ Family
N

Backpropagation Procedure
Initialize weights. Until performance is satisfactory*,
1. Present all training instances. For each one,

(a) Calculate actual output. (forward pass)

(b) Compute the weight changes. (backward pass)

i. Calculate error at output nodes. Compute adjustment

to weights from hidden layer to output layer

accordingly.

ii. Calculate error at hidden layer. Compute adjustment

to weights from initial layer to hidden layer

accordingly.

2. Add up weight changes and change the weights.

Slide CS472 — Artificial Neural Nets 21

Slide CS472 — Artificial Neural Nets 22

Gradient Descent Through Weight Space

25

Requires a Smooth Threshold Function

The error backpropagation procedure requires a
differentiable activation function.

1+ 05
slope)
Bl chmsring
05 function 1
0 : J 0 | T
-5.0 0.0 5.0 -5.0 0.0 5.0

Slide CS472 — Artificial Neural Nets 23

Slide CS472 — Artificial Neural Nets 24

Slope of Sigmoid Function

_ 1
f(z) = Tre—=
df (z
Sope: "7 = (1)
— (1 _I_ 67:1:)72 6793
= f(x) (1_7_671)

= f(o)(1 = f(z))

View in terms of output at node:
= 0;(1—0)

Slide CS472 — Artificial Neural Nets 25

Adjusting the Weights

Make a large change to a weight, w, if the change leads to a
large reduction in the errors observed at the output nodes.

d = desired value at output nodes
o = actual value at output nodes
error =d — o

Slide CS472 — Artificial Neural Nets 26

Example

Inputs Outputs

500
s
2\

O e
7N

K]

5
o\
/J §o

Slide CS472 — Artificial Neural Nets 27

Adjusting the Weights

Let change in w;_,; be proportional to
e the slope of the threshold function at j (i.e., 0; (1 — 0;))
e the output at node i (i.e., 0;)

e degree of error at j (benefit)
— output layer: 8, =d, — o,
— hidden layers: 5; = >, wjk o (1 — o) B

e learning rate r

Change to w;_,; should be proportional to o; 0; (1 — 0;) f;.

Slide CS472 — Artificial Neural Nets 28

The Backpropagation Procedure

Pick a rate parameter r.
Until performance is satisfactory,
For each training instance,

e Compute the resulting output.
e Compute f = d, — 0, for nodes in the output layer.
e Compute 8 = >, wjp ox(1 — o)y for all other nodes.

e Compute weight changes for all weights using
Awi_m- =T 0; Oj(l — Oj)ﬁj

Add up weight changes for all training instances, and change

the weights.

Slide CS472 — Artificial Neural Nets 29

Backpropagation Algorithm (Mitchell)

Initialize all weights to small random numbers. Until satisfied, do

For each training example, do

e Input the training example to the network and compute the
network outputs
e For each output unit &

6k < Ok(l — Ok)(tk — Ok)
e For each hidden unit A

(Sh — Oh(l — Oh) Z wh,kék

k€Eoutputs

e Update each network weight w; ;

w;j < w;j + Aw; ; where Aw; j = ndjz; ;

Slide CS472 — Artificial Neural Nets 30

Learning Hidden Layer Representations

Inputs Outputs

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Slide CS472 — Artificial Neural Nets 31

Learning Hidden Layer Representations

Inputs Outputs

Input Hidden Values Output
10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Slide CS472 — Artificial Neural Nets 32

Hidden Units

Hidden units are nodes that are situated between the
input nodes and the output nodes.

Hidden units allow a network to learn non-linear
functions.

Hidden units allow the network to represent
combinations of the input features.

Given too many hidden units, a neural net will simply
memorize the input patterns.

Given too few hidden units, the network may not be
able to represent all of the necessary generalizations.

Slide CS472 — Artificial Neural Nets 33

When to Consider Neural Networks

Input is high-dimensional discrete or real-valued (e.g.

raw sensor input)

Output is discrete, real-valued, or a vector of values

Possibly noisy data

Form of target function is unknown

Human readability of result is unimportant

Slide CS472 — Artificial Neural Nets 34

More on Backpropagation

Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs

Will find a local, not necessarily global error minimum
— In practice, often works well (can run multiple times)
Minimizes error over training examples

— Will it generalize well to subsequent examples?
Training can take thousands of iterations — slow!

Using network after training is very fast

Slide CS472 — Artificial Neural Nets 35

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by network
with single hidden layer
e but might require exponential (in number of inputs)

hidden units
Continuous functions:

e Every bounded continuous function can be approximated
with arbitrarily small error, by network with one hidden
layer [Cybenko 1989; Hornik et al. 1989]

Any function can be approximated to arbitrary accuracy by
a network with two hidden layers [Cybenko 1988].

Slide CS472 — Artificial Neural Nets 36

Momentum

Aw”(t —|— 1) =T 0; Oj(l — Oj)ﬁj + O[[U}U(t) — w”(t — 1)]

e A momentum factor, a, makes the n'" weight change
partially dependent on the (n — 1) weight change. «
ranges between 0 and 1.

e Momentum tends to keep the weight moving in the same
direction, thereby improving convergence.

e Tends to increase the step size in regions where the
gradient is unchanging, speeding convergence.

e Tends to avoid getting caught in small local minima and

in oscillations about local minima.

Slide CS472 — Artificial Neural Nets 37

How long should you train the net?

e The goal is to achieve a balance between correct
responses for the training patterns and correct responses
for new patterns. (That is, a balance between

memorization and generalization.)

e [f you train the net for too long, then you run the risk of
overfitting.

e In general, the network is trained until it reaches an
acceptable error rate (e.g., 95%).

Slide CS472 — Artificial Neural Nets 38

Overfitting in ANNs

Error versus weight updates (example 1)
001 T T T

~ -
0.009 |, Training set error . 4
Validation set error +
0.008 R
0.007 | .
a +
S 0006 | % .
w LY
0.005 R
0.004 b
0.003 R
0.002 : : :
0 5000 10000 15000 20000

Number of weight updates

Slide CS472 — Artificial Neural Nets 39

Overfitting in ANNs

Error versus weight updates (example 2)

008 k_.“ T T T
007 “. Training set error L
[, o Validation set error +
0.06 ™ i
g L
005 [T T 1
Sooa b . LT, |
L . %
0.03 . 1
002 ’, i
oot ¥ ."M |
0 1
0 1000 2000 3000 4000 5000 6000

Number of weight updates

Slide CS472 — Artificial Neural Nets 40

Implementing Backprop — Design Decisions
1. Choice of r
2. Stopping criterion — when should training stop?

3. Network architecture
(a) How many hidden layers? how many hidden units
per layer?

(b) How should the units be connected? (Fully? Partial?
Use domain knowledge?)

Slide CS472 — Artificial Neural Nets 41

