Connectionist Models of Learning

Neural Networks

Characterized by:

- A large number of very simple neuronlike processing elements.
- A large number of weighted connections between the elements.
- Highly parallel, distributed control.
- An emphasis on learning internal representations automatically.

Slide CS472 – Artificial Neural Nets 1

Neural Networks

Rich history, starting in the early forties.
(McCulloch and Pitts 1943)

Two views:

- Modeling the brain.
- "Just" representation of complex functions.

(Continuous; contrast decision trees.)

Much progress on both fronts.

Drawn interest from: Neuroscience, Cognitive science, AI, Physics, Statistics, and CS / EE.

Slide CS472 – Artificial Neural Nets 3

Why Neural Nets?

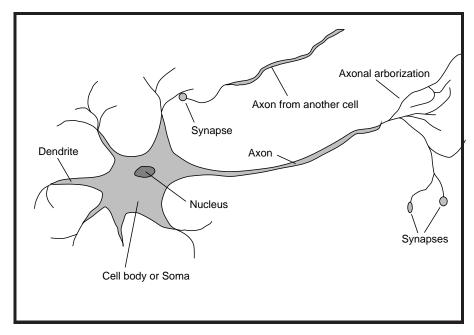
Solving problems under the constraints similar to those of the brain may lead to solutions to AI problems that would otherwise be overlooked.

- Individual neurons operate very slowly.

 massively parallel algorithms
- Neurons are failure-prone devices.

 distributed representations
- Neurons promote approximate matching.

 less brittle



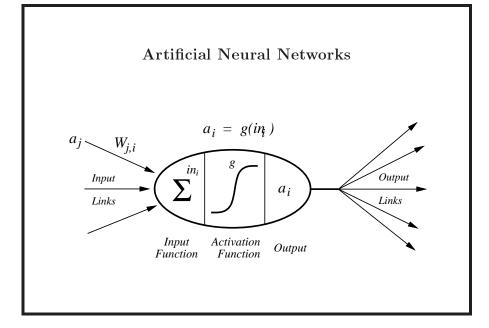
Slide CS472 – Artificial Neural Nets 4

Learning, Massive Parallelism

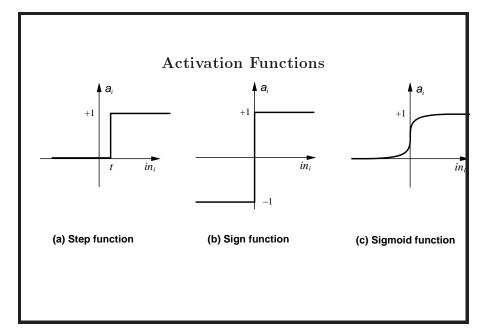
There is evidence of learning — plasticity — at synapses.

Complexity arises out of connectivity: Neurons perform highly parallel computation.

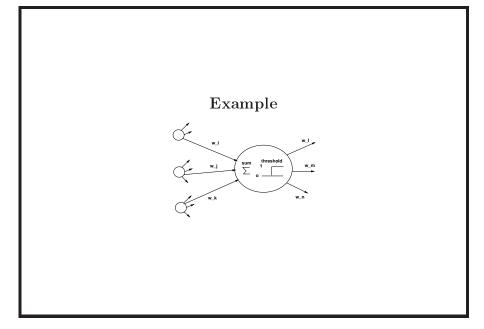
Idea: collection of simple cells leads to complex behavior: thought, action, and consciousness



Slide CS472 - Artificial Neural Nets 6



Slide CS472 - Artificial Neural Nets 7



Slide CS472 – Artificial Neural Nets 8

Can Simulate Boolean Gates

$$W = 1$$

$$W = 1$$

$$W = 0.5$$

$$W = -1$$

$$W = -0.5$$

$$W = 1$$
AND
OR
NOT

Slide CS472 – Artificial Neural Nets 9

Perceptrons I_j W_{j,i} O_i I_j W_j O Input Output Units Units Units Unit Perceptron Network Single Perceptron

Slide CS472 – Artificial Neural Nets 10

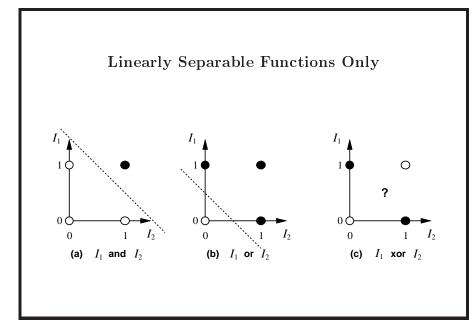
Perceptron Learning Algorithm

Remarkable learning algorithm: (Rosenblatt 1960)

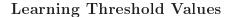
If function can be represented by perceptron,
then learning algorithm is guaranteed to quickly converge
to the hidden function!

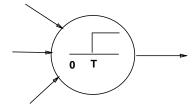
Enormous popularity in early to mid 60's.

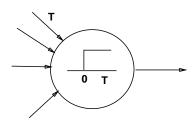
But analysis by Minsky and Papert (1969) showed certain simple functions cannot be represented (e.g. Boolean XOR). Killed the field! (and possibly Rosenblatt (rumored)).



Slide CS472 – Artificial Neural Nets 12







Slide CS472 – Artificial Neural Nets 13

High Level Algorithm

function Neural-Network-Learning(examples) returns network

 $network \leftarrow$ a network with randomly assigned weights **repeat**

for each e in examples do

 $\mathbf{O} \leftarrow \text{NEURAL-NETWORK-OUTPUT}(network, e)$

 $T \leftarrow$ the observed output values from e

update the weights in *network* based on e, \mathbf{O} , and \mathbf{T}

end

 ${\bf until}$ all examples correctly predicted or stopping criterion is reached ${\bf return}\; network$

Perceptron Learning

A perceptron can learn any linearly separable function, given enough enough training examples.

Key idea: adjust weights till all examples correct.

Update weights repeatedly (epochs) for each example.

Slide CS472 – Artificial Neural Nets 14

Weight Update Function

Single output O; target output for example T.

Define error: Err = T - O

Now, just move weights in right direction!

If error is positive, then need to increase O.

Each input unit j contributes $W_j I_j$ to total input.

if I_j is positive, increasing W_j tends to increase O

if I_i is negative, decreasing W_i tends to increase O

So, use: $W_i \leftarrow W_i + \alpha \times I_i \times Err$

Perceptron learning rule (Rosenblatt 1960). α is learning rate

Slide CS472 – Artificial Neural Nets 15

Rule is intuitively correct.

Gradient descent through weight space.

Surprise is **proof** of convergence.

Weight space has no local minima.

With enough examples, it will find the function.

(provided α not too large)

Explains early popularity.

Slide CS472 – Artificial Neural Nets 17

Learning Majority Function of 11 Inputs 0.9 % correct on test set 0.8 0.7 0.6 Perceptron -0.5 40 50 60 70 80 10 20 30 90 100 Training set size

Slide CS472 – Artificial Neural Nets 19

Consider learning the logical "or" function. Our examples are:

example	x_1	x_2	x_3	1
1	0	0	-1	0
2	0	1	-1	1
3	1	0	-1	1
4	1	1	-1	1

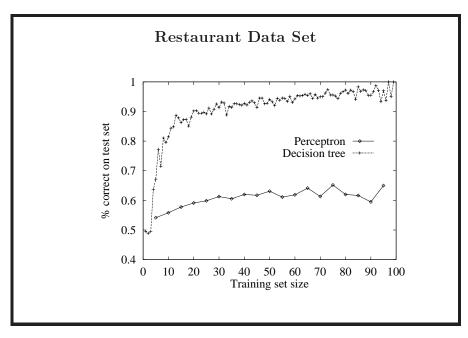
We'll use a single perceptron with three inputs (x_1, x_2, x_3) and single output (l).

Learning rate of 0.5.

Note artificial input x_3 fixed at -1.

[Step-by-step walk-through is in separate handout.]

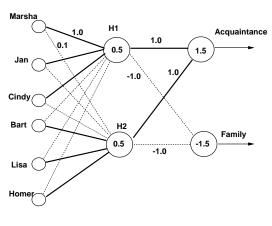
Slide CS472 – Artificial Neural Nets 18



Slide CS472 - Artificial Neural Nets 20

Complex Feedforward Nets for Classification

Feedforward, layered, fully connected



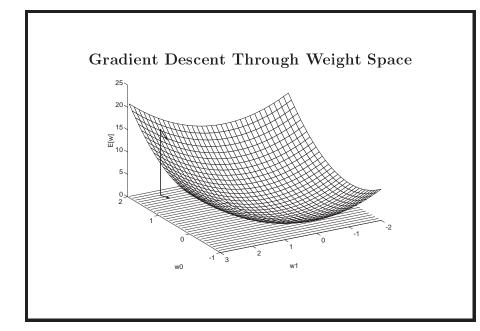
Slide CS472 – Artificial Neural Nets 21

Backpropagation Procedure

Initialize weights. Until performance is satisfactory*,

- 1. Present all training instances. For each one,
 - (a) Calculate actual output. (forward pass)
 - (b) Compute the weight changes. (backward pass)
 - i. Calculate error at output nodes. Compute adjustment to weights from hidden layer to output layer accordingly.
 - ii. Calculate error at hidden layer. Compute adjustment to weights from initial layer to hidden layer accordingly.
- 2. Add up weight changes and change the weights.

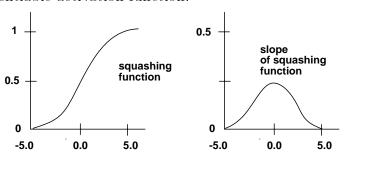
Slide CS472 – Artificial Neural Nets 22



Slide CS472 – Artificial Neural Nets 23

${\bf Requires~a~Smooth~Threshold~Function}$

The error backpropagation procedure requires a differentiable activation function.



Slide CS472 – Artificial Neural Nets 24

Slope of Sigmoid Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

Slope:
$$\frac{df(x)}{dx} = \frac{d}{dx} \left(\frac{1}{1+e^{-x}} \right)$$

= $(1 + e^{-x})^{-2} e^{-x}$
= $\frac{e^{-x}}{(1+e^{-x})(1+e^{-x})}$
= $f(x) \frac{e^{-x}}{(1+e^{-x})}$
= $f(x)(1 - f(x))$

View in terms of output at node:

$$= o_j(1 - o_j)$$

Slide CS472 – Artificial Neural Nets 25

Adjusting the Weights

Make a large change to a weight, w, if the change leads to a large reduction in the errors observed at the output nodes.

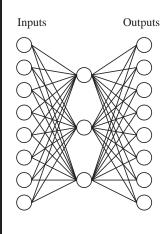
d =desired value at output nodes

o =actual value at output nodes

error = d - o

Slide CS472 – Artificial Neural Nets 26

Example



Slide CS472 - Artificial Neural Nets 27

Adjusting the Weights

Let change in $w_{i\to j}$ be proportional to

- the slope of the threshold function at j (i.e., $o_j(1-o_j)$)
- the output at node i (i.e., o_i)
- degree of error at j (benefit)
 - output layer: $\beta_z = d_z o_z$
 - hidden layers: $\beta_j = \sum_k w_{j\to k} o_k (1 o_k) \beta_k$
- \bullet learning rate r

Change to $w_{i\to j}$ should be proportional to $o_i o_j (1-o_j) \beta_j$.

The Backpropagation Procedure

Pick a rate parameter r.

Until performance is satisfactory,

For each training instance,

- Compute the resulting output.
- Compute $\beta = d_z o_z$ for nodes in the output layer.
- Compute $\beta = \sum_k w_{j\to k} o_k (1-o_k) \beta_k$ for all other nodes.
- Compute weight changes for all weights using

$$\Delta w_{i \to j} = r \ o_i \ o_j (1 - o_j) \beta_j$$

Add up weight changes for all training instances, and change the weights.

Slide CS472 - Artificial Neural Nets 29

Backpropagation Algorithm (Mitchell)

Initialize all weights to small random numbers. Until satisfied, do For each training example, do

- Input the training example to the network and compute the network outputs
- \bullet For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

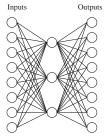
• For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

• Update each network weight $w_{i,j}$ $w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$ where $\Delta w_{i,j} = \eta \delta_j x_{i,j}$

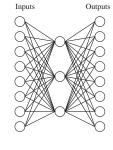
Slide CS472 - Artificial Neural Nets 30

Learning Hidden Layer Representations



Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Learning Hidden Layer Representations



Input		Hidden Values			Output	
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001

Slide CS472 – Artificial Neural Nets 31

Hidden Units

- **Hidden units** are nodes that are situated between the input nodes and the output nodes.
- Hidden units allow a network to learn non-linear functions.
- Hidden units allow the network to represent combinations of the input features.
- Given too many hidden units, a neural net will simply memorize the input patterns.
- Given too few hidden units, the network may not be able to represent all of the necessary generalizations.

Slide CS472 – Artificial Neural Nets 33

More on Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete, real-valued, or a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant

Slide CS472 - Artificial Neural Nets 34

Expressive Capabilities of ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

• Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]

Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Slide CS472 - Artificial Neural Nets 35

Momentum

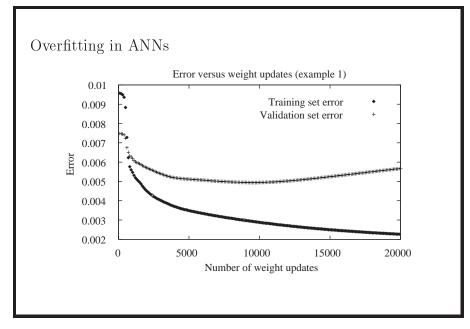
$$\Delta w_{ij}(t+1) = r \ o_i \ o_j(1-o_j)\beta_j + \alpha[w_{ij}(t) - w_{ij}(t-1)]$$

- A momentum factor, α , makes the n^{th} weight change partially dependent on the $(n-1)^{th}$ weight change. α ranges between 0 and 1.
- Momentum tends to keep the weight moving in the same direction, thereby improving convergence.
- Tends to increase the step size in regions where the gradient is unchanging, speeding convergence.
- Tends to avoid getting caught in small local minima and in oscillations about local minima.

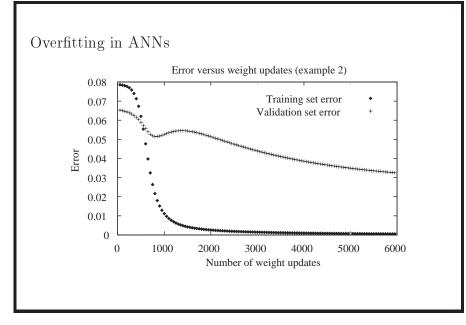
Slide CS472 – Artificial Neural Nets 37

How long should you train the net?

- The goal is to achieve a balance between correct responses for the training patterns and correct responses for new patterns. (That is, a balance between memorization and generalization.)
- If you train the net for too long, then you run the risk of overfitting.
- In general, the network is trained until it reaches an acceptable error rate (e.g., 95%).



Slide CS472 – Artificial Neural Nets 39



Slide CS472 – Artificial Neural Nets 40

Implementing Backprop – Design Decisions

- 1. Choice of r
- 2. Stopping criterion when should training stop?
- 3. Network architecture
 - (a) How many hidden layers? how many hidden units per layer?
 - (b) How should the units be connected? (Fully? Partial? Use domain knowledge?)