# Game Playing

#### An AI Favorite

- structured task
- not initially thought to require large amounts of knowledge
- focus on games of perfect information

Slide CS472 – Adversarial Search 1

# Game Playing

Initial State is the initial board/position

Successor Function defines the set of legal moves from any position

Terminal Test determines when the game is over

Utility Function gives a numeric outcome for the game







Slide CS472 – Adversarial Search 4



Slide CS472 – Adversarial Search 5

# MAX $A_{1}$ $A_{1}$ $A_{1}$ $A_{1}$ $A_{1}$ $A_{1}$ $A_{1}$ $A_{1}$ $A_{2}$ $A_{2}$ $A_{2}$ $A_{2}$ $A_{3}$ $A_{4}$ $A_{3}$ $A_{4}$ $A_{5}$ $A_{2}$ $A_{1}$ $A_{2}$ $A_{2}$ $A_{2}$ $A_{3}$ $A_{3}$

Slide CS472 – Adversarial Search 7

# Simplified Minimax Algorithm

- 1. Expand the entire tree below the root.
- 2. Evaluate the terminal nodes as wins for the minimizer or maximizer.
- 3. Select an unlabeled node, n, all of whose children have been assigned values. If there is no such node, we're done return the value assigned to the root.
- 4. If n is a minimizer move, assign it a value that is the minimum of the values of its children. If n is a maximizer move, assign it a value that is the maximum of the values of its children. Return to Step 3.

#### Slide CS472 – Adversarial Search 6

# function MINIMAX-DECISION(game) returns an operator for each op in OPERATORS[game] do VALUE[op] ← MINIMAX-VALUE(APPLY(op, game), game) end return the op with the highest VALUE[op] function MINIMAX-VALUE(state, game) returns a utility value if TERMINAL-TEST[game](state) then return UTILITY[game](state) else if MAX is to move in state then return the highest MINIMAX-VALUE of SUCCESSORS(state) else return the lowest MINIMAX-VALUE of SUCCESSORS(state)

Slide CS472 – Adversarial Search 8

# The Need for Imperfect Decisions

**Problem:** Minimax assumes the program has time to search to the terminal nodes.

**Solution:** Cut off search earlier and apply a heuristic evaluation function to the leaves.

Slide CS472 – Adversarial Search 9

### Design Issues for Heuristic Minimax

**Evaluation Function:** What features should we evaluate and how should we use them? An evaluation function should:

- 1.
- 2.
- 3.

Slide CS472 – Adversarial Search 11

#### **Static Evaluation Functions**

Minimax depends on the translation of board quality into a single, summarizing number. Difficult. Expensive.

- Add up values of pieces each player has (weighted by importance of piece).
- Isolated pawns are bad.
- How well protected is your king?
- How much maneuverability to you have?
- Do you control the center of the board?
- Strategies change as the game proceeds.

Slide CS472 – Adversarial Search 10

#### **Linear Evaluation Functions**

- $w_1f_1 + w_2f_2 + ... + w_nf_n$
- This is what most game playing programs use
- Steps in designing an evaluation function:
  - 1. Pick informative features
  - 2. Find the weights that make the program play well

# Design Issues for Heuristic Minimax

Search: search to a constant depth

Problems:

- •

Slide CS472 – Adversarial Search 13



Slide CS472 – Adversarial Search 14



Slide CS472 – Adversarial Search 15

# Algebraic Solution

Let g' = e(g). Then  $c' = \min(-.05, g')$ .

The value assigned to the root node a is

$$a' = \max(.03, \min(-.05, g')) = .03$$

because  $\min(-.05, g') \le -.05 < .03$ .

The value assigned to a is independent of the value assigned to g.



Slide CS472 - Adversarial Search 17

#### $\alpha - \beta$ Search

c = search cutoff

 $\alpha$  = lower bound on Max's outcome; initially set to  $-\infty$ 

 $\beta=$  upper bound on Min's outcome ; initially set to  $+\infty$ 

We'll call  $\alpha-\beta$  procedure recursively with a narrowing range between  $\alpha$  and  $\beta$ .

Maximizing levels may reset  $\alpha$  to a higher value; Minimizing levels may reset  $\beta$  to a lower value.

Slide CS472 – Adversarial Search 19



If m is better than n for Player, never get to n in play.

Slide CS472 - Adversarial Search 18

# $\alpha - \beta$ Search Algorithm

- 1. If the limit of search has been reached, compute e(n) and report the result.
- 2. Otherwise, if the level is a **minimizing** level,
  - Until no more children or  $\beta \leq \alpha$ ,
    - Use  $\alpha \beta$  search on child with current values of  $\alpha$  and  $\beta$ ; note the value, v, returned.
    - If  $v < \beta$ , reset  $\beta$  to v.
  - Report  $\beta$ .

- 3. Otherwise, the level is a **maximizing** level:
  - Until no more children or  $\alpha \geq \beta$ ,
    - Use  $\alpha \beta$  search on child with current values of  $\alpha$  and  $\beta$ ; note the value, v, returned.
    - If  $v > \alpha$ , reset  $\alpha$  to v.
  - Report  $\alpha$ .

Slide CS472 – Adversarial Search 21

# Search Space Size Reductions

Worst Case: In an ordering where worst options evaluated first, all nodes must be examined.

**Best Case**: If nodes ordered so that the best options are evaluated first, then what?



Slide CS472 - Adversarial Search 23



Slide CS472 – Adversarial Search 22



Slide CS472 – Adversarial Search 24

## Backgammon – Rules

- Goal: move all of your pieces off the board before your opponent does.
- Black moves counterclockwise toward 0.
- White moves clockwise toward 25.
- A piece can move to any position except one where there are two or more of the opponent's pieces.
- If it moves to a position with one opponent piece, that piece is captured and has to start it's journey from the beginning.

Slide CS472 – Adversarial Search 25

# Backgammon-Rules

- If you roll doubles you take 4 moves (example: roll 5,5, make moves 5,5,5,5).
- Moves can be made by one or two pieces (in the case of doubles by 1, 2, 3 or 4 pieces)
- And a few other rules that concern bearing off and forced moves.

Slide CS472 - Adversarial Search 26



White has rolled 6-5 and has 4 legal moves: (5-10,5-11), (5-11,19-24), (5-10,10-16) and (5-11,11-16).



Slide CS472 – Adversarial Search 28

# Expectiminimax

Slide CS472 - Adversarial Search 29

# State of the Art in Backgammon

- 1980: *BKG* using two-ply (depth 2) search and lots of luck defeated the human world champion.
- 1992: Tesauro combines Samuel's learning method with neural networks to develop a new evaluation function, resulting in a program ranked among the top 3 players in the world.



Slide CS472 – Adversarial Search 30

#### State of the Art in Checkers

- 1952: Samuel developed a checkers program that learned its own evaluation function through self play.
- 1990: *Chinook* (J. Schaeffer) wins the U.S. Open. At the world championship, Marion Tinsley beat *Chinook*.

Slide CS472 - Adversarial Search 31

#### State of the Art in Go

Large branching factor makes regular search methods inappropriate.

Best computer Go programs ranked only "weak amateur".

Employ pattern recognition techniques and limited search.

\$2,000,000 prize available for first computer program to defeat a top level player.

#### Slide CS472 – Adversarial Search 33

# History of Chess in AI

| 500  | legal chess       |
|------|-------------------|
| 1200 | occasional player |
| 2000 | world-ranked      |
| 2900 | Gary Kasparov     |

Early 1950's Shannon and Turing both had programs that (barely) played legal chess (500 rank).

1950's Alex Bernstein's system,  $(500+\epsilon)$ .

1957 Herb Simon claims that a computer chess program would be world chess champion in 10 years...yeah, right.

#### Slide CS472 – Adversarial Search 35

#### Othello

- Smaller search space than chess; usually 5 to 15 legal moves.
- Evaluation function expertise had to be developed from scratch.
- 1997: Logistello defeated the human world champion, 6-0.
- Generally acknowledged that humans are no match for computers at Othello.

#### Slide CS472 – Adversarial Search 34

- 1966 McCarthy arranges computer chess match, Stanford vs. Russia. Long, drawn-out match. Russia wins.
- **1967** Richard Greenblatt, MIT. First of the modern chess programs, *MacHack* (1100 rating).
- 1968 McCarthy, Michie, Papert bet Levy (rated 2325) that a computer program would beat him within 10 years.
- **1970** ACM started running chess tournaments. Chess 3.0-6 (rated 1400).
- 1973 By 1973...Slate: "It had become too painful even to look at Chess 3.6 any more, let alone work on it."
- 1973 Chess 4.0: smart plausible-move generator rather than

speeding up the search. Improved rapidly when put on faster machines.

**1976** Chess 4.5: ranking of 2070.

1977 Chess 4.5 vs. Levy. Levy wins.

1980's Programs depend on search speed rather than knowledge (2300 range).

1993 DEEP THOUGHT: Sophisticated special-purpose computer;  $\alpha - \beta$  search; searches 10-ply; singular extensions; rated about 2600.

1995 DEEP BLUE: searches 14-ply; considers 100–200 billion positions per move; regularly reaches depth 14;

Slide CS472 – Adversarial Search 37

### Concludes "Search"

- Problem Solving as Search
- Uninformed search: DFS / BFS / Uniform cost search time / space complexity size search space: up to approx. 10<sup>11</sup> nodes special case: Constraint Satisfaction / CSPs generic framework: variables & constraints backtrack search (DFS); propagation (forward-checking / arc-consistency, variable / value ordering

extensions to 40-ply; opening book of 4000 positions; end-game database for 5-6 pieces.

evaluation function has 8000+ features; singular

**1997** DEEP BLUE: first match won against world-champion (Kasparov).

**2002** IBM declines re-match. FRITZ played world champion Vladimir Kramnik. 8 games. Ended in a draw.

Slide CS472 – Adversarial Search 38

• Informed Search: use heuristic function guide to goal

Greedy best-first search

 $A*search \ / \ provably \ optimal$ 

Search space up to approximately  $10^{25}$ 

#### Local search

Greedy / Hillclimbing

Simulated annealing

Tabu search

Genetic Algorithms / Genetic Programming search space  $10^{100}$  to  $10^{1000}$ 

Slide CS472 – Adversarial Search 39

• Aversarial Search / Game Playing minimax

Up to around  $10^{10}$  nodes, 6-7 ply in chess. alpha-beta pruning

Up to around  $10^{20}$  nodes, 14 ply in chess. provably optimal

Slide CS472 - Adversarial Search 41

# Search and AI

Why such a central role?

Basically, because lots of tasks in AI are **intractable**. Search is "only" way to handle them.

Many applications of search, in e.g., Learning / Reasoning / Planning / NLU / Vision

Good thing: much recent progress ( $10^{30}$  quite feasible; sometimes up to  $10^{1000}$ ). Qualitative difference from only a few years ago!