
Game Playing

An AI Favorite

• structured task

• not initially thought to require large amounts of

knowledge

• focus on games of perfect information

Slide CS472 – Adversarial Search 1

Game Playing

Initial State is the initial board/position

Successor Function defines the set of legal moves from

any position

Terminal Test determines when the game is over

Utility Function gives a numeric outcome for the game

Slide CS472 – Adversarial Search 2

Game Playing as Search

Slide CS472 – Adversarial Search 3

Partial Search Tree for Tic-Tac-Toe

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

Slide CS472 – Adversarial Search 4

Simple Minimax

-1

1 -1

1

1

1

-1 1 -1

Slide CS472 – Adversarial Search 5

Simplified Minimax Algorithm

1. Expand the entire tree below the root.

2. Evaluate the terminal nodes as wins for the minimizer or

maximizer.

3. Select an unlabeled node, n, all of whose children have

been assigned values. If there is no such node, we’re

done — return the value assigned to the root.

4. If n is a minimizer move, assign it a value that is the

minimum of the values of its children. If n is a

maximizer move, assign it a value that is the maximum

of the values of its children. Return to Step 3.

Slide CS472 – Adversarial Search 6

Another Example

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3A

2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

3 2 2

Slide CS472 – Adversarial Search 7

Minimax

function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game] do
VALUE[op]�MINIMAX-VALUE(APPLY(op, game), game)

end
return the op with the highest VALUE[op]

function MINIMAX-VALUE(state, game) returns a utility value

if TERMINAL-TEST[game](state) then
return UTILITY[game](state)

else if MAX is to move in state then
return the highest MINIMAX-VALUE of SUCCESSORS(state)

else
return the lowest MINIMAX-VALUE of SUCCESSORS(state)

Slide CS472 – Adversarial Search 8

The Need for Imperfect Decisions

Problem: Minimax assumes the program has time to

search to the terminal nodes.

Solution: Cut off search earlier and apply a heuristic

evaluation function to the leaves.

Slide CS472 – Adversarial Search 9

Static Evaluation Functions

Minimax depends on the translation of board quality into a

single, summarizing number. Difficult. Expensive.

• Add up values of pieces each player has (weighted by

importance of piece).

• Isolated pawns are bad.

• How well protected is your king?

• How much maneuverability to you have?

• Do you control the center of the board?

• Strategies change as the game proceeds.

Slide CS472 – Adversarial Search 10

Design Issues for Heuristic Minimax

Evaluation Function: What features should we evaluate

and how should we use them? An evaluation function

should:

1.

2.

3.

Slide CS472 – Adversarial Search 11

Linear Evaluation Functions

• w1f1 + w2f2 + ... + wnfn

• This is what most game playing programs use

• Steps in designing an evaluation function:

1. Pick informative features

2. Find the weights that make the program play well

Slide CS472 – Adversarial Search 12

Design Issues for Heuristic Minimax

Search: search to a constant depth

Problems:

•
•

Slide CS472 – Adversarial Search 13

Improving Minimax — α − β pruning

A

B C D

E F G

H I J K

L M N O

P Q R

-1

1 -1

1

1

-1

1

-1 1 -1

Slide CS472 – Adversarial Search 14

Two More Examples

A

B C

J K

-1 ?

(get mated)

(attack queen)

A

B C

(attack queen)

(queen trade) D

E F

G

.03

-.1 -.05

Slide CS472 – Adversarial Search 15

Algebraic Solution

Let g′ = e(g). Then c′ = min(−.05, g′).

The value assigned to the root node a is

a′ = max(.03,min(−.05, g′)) = .03

because min(−.05, g′) ≤ −.05 < .03.

The value assigned to a is independent of the value assigned

to g.

Slide CS472 – Adversarial Search 16

A deep α − β cutoff

A

B C

D

E

.03

I

F G

H

-.1

Slide CS472 – Adversarial Search 17

Player

Opponent

Player

Opponent

..

..

..

m

n

If m is better than n for Player, never get to n in play.

Slide CS472 – Adversarial Search 18

α − β Search

c = search cutoff

α = lower bound on Max’s outcome; initially set to −∞
β = upper bound on Min’s outcome ; initially set to +∞

We’ll call α − β procedure recursively with a narrowing

range between α and β.

Maximizing levels may reset α to a higher value; Minimizing

levels may reset β to a lower value.

Slide CS472 – Adversarial Search 19

α − β Search Algorithm

1. If the limit of search has been reached, compute e(n)

and report the result.

2. Otherwise, if the level is a minimizing level,

• Until no more children or β ≤ α,

– Use α − β search on child with current values of α

and β; note the value, v, returned.

– If v < β, reset β to v.

• Report β.

Slide CS472 – Adversarial Search 20

3. Otherwise, the level is a maximizing level:

• Until no more children or α ≥ β,

– Use α − β search on child with current values of α

and β; note the value, v, returned.

– If v > α, reset α to v.

• Report α.

Slide CS472 – Adversarial Search 21

Example

A

B C

D

E

.03

I

F G

H

-.1

J

1

1

-1 -1

Slide CS472 – Adversarial Search 22

Search Space Size Reductions

Worst Case: In an ordering where worst options evaluated

first, all nodes must be examined.

Best Case: If nodes ordered so that the best options are

evaluated first, then what?

Slide CS472 – Adversarial Search 23

Backgammon – Board

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Slide CS472 – Adversarial Search 24

Backgammon – Rules

• Goal: move all of your pieces off the board before your

opponent does.

• Black moves counterclockwise toward 0.

• White moves clockwise toward 25.

• A piece can move to any position except one where there

are two or more of the opponent’s pieces.

• If it moves to a position with one opponent piece, that

piece is captured and has to start it’s journey from the

beginning.

Slide CS472 – Adversarial Search 25

Backgammon – Rules

• If you roll doubles you take 4 moves (example: roll 5,5,

make moves 5,5,5,5).

• Moves can be made by one or two pieces (in the case of

doubles by 1, 2, 3 or 4 pieces)

• And a few other rules that concern bearing off and forced

moves.

Slide CS472 – Adversarial Search 26

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

White has rolled 6-5 and has 4 legal moves: (5-10,5-11),

(5-11,19-24), (5-10,10-16) and (5-11,11-16).

Slide CS472 – Adversarial Search 27

Game Tree for Backgammon

DICE

MIN

MAX

DICE

MAX

. . .

. . .

. . .

B

2 1 −1 1−1

. . .

6,66,51,1
1/36

1,2
1/18

TERMINAL

6,66,51,1
1/36

1,2
1/18

......

.........

.........

......

...
C

Slide CS472 – Adversarial Search 28

Expectiminimax

Expectiminimax (n) =

utility(n) for n, a terminal state

maxs∈Succ(n) expectiminimax(s) for n, a Max node

mins∈Succ(n) expectiminimax(s) for n, a Min node
∑

s∈Succ(n) P(s) * expectiminimax(s) for n, a chance node

Slide CS472 – Adversarial Search 29

Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

A 1 A 2 A 1 A 2

Slide CS472 – Adversarial Search 30

State of the Art in Backgammon

• 1980: BKG using two-ply (depth 2) search and lots of

luck defeated the human world champion.

• 1992: Tesauro combines Samuel’s learning method with

neural networks to develop a new evaluation function,

resulting in a program ranked among the top 3 players

in the world.

Slide CS472 – Adversarial Search 31

State of the Art in Checkers

• 1952: Samuel developed a checkers program that learned

its own evaluation function through self play.

• 1990: Chinook (J. Schaeffer) wins the U.S. Open. At the

world championship, Marion Tinsley beat Chinook.

Slide CS472 – Adversarial Search 32

State of the Art in Go

Large branching factor makes regular search methods

inappropriate.

Best computer Go programs ranked only “weak amateur”.

Employ pattern recognition techniques and limited search.

$2,000,000 prize available for first computer program to

defeat a top level player.

Slide CS472 – Adversarial Search 33

Othello

• Smaller search space than chess; usually 5 to 15 legal

moves.

• Evaluation function expertise had to be developed from

scratch.

• 1997: Logistello defeated the human world champion,

6-0.

• Generally acknowledged that humans are no match for

computers at Othello.

Slide CS472 – Adversarial Search 34

History of Chess in AI

500 legal chess

1200 occasional player

2000 world-ranked

2900 Gary Kasparov

Early 1950’s Shannon and Turing both had programs that

(barely) played legal chess (500 rank).

1950’s Alex Bernstein’s system, (500+ε).

1957 Herb Simon claims that a computer chess program

would be world chess champion in 10 years...yeah, right.

Slide CS472 – Adversarial Search 35

1966 McCarthy arranges computer chess match, Stanford

vs. Russia. Long, drawn-out match. Russia wins.

1967 Richard Greenblatt, MIT. First of the modern chess

programs, MacHack (1100 rating).

1968 McCarthy, Michie, Papert bet Levy (rated 2325) that

a computer program would beat him within 10 years.

1970 ACM started running chess tournaments. Chess 3.0-6

(rated 1400).

1973 By 1973...Slate:“It had become too painful even to

look at Chess 3.6 any more, let alone work on it.”

1973 Chess 4.0: smart plausible-move generator rather than

Slide CS472 – Adversarial Search 36

speeding up the search. Improved rapidly when put on

faster machines.

1976 Chess 4.5: ranking of 2070.

1977 Chess 4.5 vs. Levy. Levy wins.

1980’s Programs depend on search speed rather than

knowledge (2300 range).

1993 DEEP THOUGHT: Sophisticated special-purpose

computer; α − β search; searches 10-ply; singular

extensions; rated about 2600.

1995 DEEP BLUE: searches 14-ply; considers 100–200

billion positions per move; regularly reaches depth 14;

Slide CS472 – Adversarial Search 37

evaluation function has 8000+ features; singular

extensions to 40-ply; opening book of 4000 positions;

end-game database for 5-6 pieces.

1997 DEEP BLUE: first match won against

world-champion (Kasparov).

2002 IBM declines re-match. FRITZ played world

champion Vladimir Kramnik. 8 games. Ended in a draw.

Slide CS472 – Adversarial Search 38

Concludes “Search”

• Problem Solving as Search

• Uninformed search: DFS / BFS / Uniform cost search

time / space complexity

size search space: up to approx. 1011 nodes

special case: Constraint Satisfaction / CSPs

generic framework: variables & constraints

backtrack search (DFS); propagation (forward-

checking / arc-consistency, variable / value ordering

Slide CS472 – Adversarial Search 39

• Informed Search: use heuristic function guide to goal

Greedy best-first search

A* search / provably optimal

Search space up to approximately 1025

Local search

Greedy / Hillclimbing

Simulated annealing

Tabu search

Genetic Algorithms / Genetic Programming

search space 10100 to 101000

Slide CS472 – Adversarial Search 40

• Aversarial Search / Game Playing

minimax

Up to around 1010 nodes, 6 — 7 ply in chess.

alpha-beta pruning

Up to around 1020 nodes, 14 ply in chess.

provably optimal

Slide CS472 – Adversarial Search 41

Search and AI

Why such a central role?

Basically, because lots of tasks in AI are intractable.

Search is “only” way to handle them.

Many applications of search, in e.g.,

Learning / Reasoning / Planning / NLU / Vision

Good thing: much recent progress (1030 quite feasible;

sometimes up to 101000). Qualitative difference

from only a few years ago!

Slide CS472 – Adversarial Search 42

