So far, we have considered methods that systematically explore the full search space, possibly using $\mathbf{principled}$ pruning (A* etc.).

The current best such algorithms (RBFS / SMA*) can handle search spaces of up to 10^{100} states.

But search spaces for some real-world problems might be much bigger — e.g. $10^{30,000}$ states.

Local Search Methods

Slide CS472 - Local Search 1

Example

Slide CS472 – Local Search 3

Local Search Methods

Applicable when we're interested in the Goal State — not in how to get there.

E.g. N-Queens, VLSI layout, or map coloring.

Basic idea:

use a single current state

don't save paths followed

generally move only to successors/neighbors of that state

Generally require a complete state description.

Slide CS472 – Local Search 2

Hill-Climbing Search

function HILL-CLIMBING(problem) returns a solution state inputs: problem, a problem static: current, a node next, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do

next ← a highest-valued successor of current if VALUE[next] < VALUE[current] then return current current ← next end

Slide CS472 – Local Search 5

Slide CS472 – Local Search 6

Improvements to Basic Local Search

Issue: How to move more quickly to successively higher plateaus and avoid getting "stuck" / local minima.

Idea: Introduce uphill moves ("noise") to escape from long plateaus (or true local minima).

Strategies:

- Multiple runs from randomly generated initial states
- $\bullet \,$ Random-restart hill-climbing
- Tabu search
- Simulated Annealing
- \bullet Genetic Algorithms

uck" / local minima. Variations on Hill-Climbing

1. random restarts: simply restart at a new random state

- after a pre-defined number of local steps.

 2. tabu: prevent returning quickly to same state.
- 2. **tabu:** prevent returning quickly to same state.

 Implementation: Keep fixed length queue ("tabu list"): add most recent step to queue; drop "oldest" step. Never make step that's currently on the tabu list.

Slide CS472 – Local Search 8

Simulated Annealing

Idea:

Use conventional hill-climbing techniques, but occasionally take a step in a direction other than that in which the rate of change is maximal.

As time passes, the probability that a down-hill step is taken is gradually reduced and the size of any down-hill step taken is decreased.

Kirkpatrick et al. 1982; Metropolis et al. 1953.

Slide CS472 – Local Search 9

 $current \leftarrow \text{initial state}$ for $t \leftarrow 1$ to inf do

 $T \leftarrow schedule[t]$

if T = 0 then return current

 $next \leftarrow \text{randomly selected successor of } current$

 $\Delta E \leftarrow h(\textit{next}) - h(\textit{current})$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

SA Algorithm

current, next: nodes/states

 $T\!\!:$ "temperature" controlling probability of downward steps

schedule: mapping from time to "temperature"

h: heuristic evaluation function

Slide CS472 - Local Search 10

Genetic Algorithms

- \bullet Approach mimics evolution.
- Usually presented using a rich (and different) vocabulary:
 - fitness, populations, individuals, genes, crossover, mutations, etc.
- Still, can be viewed quite directly in terms of standard **local** search.

Slide CS472 - Local Search 11

Features of evolution

- High degree of parallelism
- New individuals ("next state / neighboring states"):

 derived from "parents" ("crossover operation")

 genetic mutations
- Selection of next generation: based on survival of the fittest

Slide CS472 – Local Search 13

General Idea

- Maintain a population of individuals (states / strings / candidate solutions)
- Each individual is evaluated using a **fitness function**, i.e. an evaluation function. The fitness scores force individuals to compete for the privilege of survival and reproduction.
- Generate a sequence of generations:
 - From the current generation, select **pairs** of individuals (based on fitness) to generate new individuals, using
 crossover.
- \bullet Introduce some noise through random $\mathbf{mutations}.$
- Hope that average and maximum fitness (i.e. value to be optimized) increases over time.

Genetic Algorithms

Inspired by biological processes that produce genetic change in populations of individuals.

Genetic algorithms (GAs) are local search procedures that usually the following basic elements:

- A Darwinian notion of **fitness**: the most fit individuals have the best chance of survival and reproduction.
- Mating operators:
 - Parents are selected.
 - Parents contribute their genetic material to their children.
 - Mutation: individuals are subject to random changes in their genetic material.

Slide CS472 – Local Search 14

Genetic algorithms as search

- Genetic algorithms are local heuristic search algorithms.
- Especially good for problems that have large and poorly understood search spaces.
- Genetic algorithms use a randomized parallel beam search to explore the state space.
- You must be able to define a good fitness function, and of course, a good state representation.

Slide CS472 – Local Search 15

Binary string representations

- Individuals are usually represented as a string over a finite alphabet, usually bit strings.
- Individuals represented can be arbitrarily complex.
- E.g. each component of the state description is allocated a specific portion of the string, which encodes the values that are acceptable.
- Bit string representation allows crossover operation to change multiple values in the state description. Crossover and mutation can also produce previously unseen values.

Slide CS472 - Local Search 17

8-queens State Representation

option 1: 86427531

option 2: 111 101 011 001 110 100 010 000

Slide CS472 - Local Search 18

GA: High-level Algorithm

Slide CS472 – Local Search 19

Crossover Example

Another Example

World championship chocolate chip cookie recipe.

	flour	sugar	salt	chips	vanilla	fitness
1	4	1	2	16	1	
2	4.5	3	1	14	2	
3	2	1	1	8	1	
4	2.2	2.5	2.5	16	2	
5	4.1	2.5	1.5	10	1	
6	8	1.5	2	8	2	
7	3	1.5	1.5	8	2	
ger	neratio	n 1				

Slide CS472 - Local Search 21

Selecting Most Fit Individuals

Individuals are chosen probabilistically for survival and crossover based on fitness proportionate selection:

$$Pr(i) = \frac{Fitness(i)}{\sum_{j=1}^{p} Fitness(i_j)}$$

 $GA(Fitness, Fitness_threshold, p, r, m)$

- $P \leftarrow$ randomly generate p individuals
- For each i in P, compute Fitness(i)
- While $[\max_{i} Fitness(i)] < Fitness_threshold$
 - 1. Probabilistically **select** (1-r)p members of P to add to P_S .
 - 2. Probabilistically choose $\frac{r \cdot p}{2}$ pairs of individuals from P. For each pair, $\langle i_1, i_2 \rangle$, apply **crossover** and add the offspring to P_s
 - 3. Mutate $m \cdot p$ random members of P_s
 - 4. $P \leftarrow P_s$
 - 5. For each i in P, compute Fitness(i)
- Return the individual in P with the highest fitness.

Slide CS472 – Local Search 22

Other selection methods include:

- Tournament Selection: 2 individuals selected at random. With probability p, the more fit of the two is selected. With probability (1-p), the less fit is selected.
- Rank Selection: The individuals are sorted by fitness and the probability of selecting an individual is proportional to its rank in the list.

Slide CS472 – Local Search 23

Crossover Operators

Single-point crossover:

 $\textit{Parent A:} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1}$

 $Parent \ B: \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0$

Child AB: 1 0 0 1 0 1 0 1 1 0

Child BA: 0 1 0 1 1 1 1 1 0 1

Slide CS472 – Local Search 25

Two-point crossover:

Parent A: 1 0 0 1 0 1 1 0 1

Parent B: 0 1 0 1 1 1 0 1 1 0

Child AB: 1 0 0 1 1 1 0 1 0 1

Child BA: 0 1 0 1 **0 1** 1 1 1 0

Slide CS472 - Local Search 26

Uniform Crossover

Uniform crossover:

Parent A: 1 0 0 1 0 1 1 0 1

Parent B: 0 1 0 1 1 1 0 1 1 0

Child AB: 1 1 0 1 1 1 1 0 1

Child BA: 0 0 0 1 0 1 0 1 0

Mutation

Mutation: randomly toggle one bit

 $Individual \ A: \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1$

 $Individual\ A \ \vdots \quad 1 \quad 0 \quad 0 \quad \mathbf{0} \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1$

Slide CS472 – Local Search 27

Mutation

- The **mutation** operator introduces random variations, allowing solutions to jump to different parts of the search space.
- What happens if the mutation rate is too low?
- What happens if the mutation rate is too high?
- A common strategy is to use a high mutation rate when search begins but to decrease the mutation rate as the search progresses.

Slide CS472 – Local Search 29

Two solutions:

- 1. define special genetic operators that only produce syntactically and semantically legal solutions.
- 2. ensure that the fitness function returns extremely low fitness values to illegal solutions.

Deriving illegal structures

Consider the traveling salesperson problem, where an individual represents a potential solution. The standard crossover operator can produce illegal children:

Parent A:	ITH	Pitt	Chicago	Denver	Boise
Parent B:	Boise	Chicago	ITH	Phila	Pitt
Child AB:	ITH	Pitt	Chicago	Phila	Pitt
Child BA:	Boise	Chicago	ITH	Denver	Boise

Slide CS472 - Local Search 30

Applications: Parameter Optimization

- Parameter optimization problems are well-suited for GAs.

 Each individual represents a set of parameter values and the
 GA tries to find the set of parameter values that achieves the
 best performance.
- Crossover: creates new combinations of parameter values and, using a binary representation, both the crossover and mutation operators can produce new values.
- Many learning systems can be recast as parameter optimization problems. For example, most neural networks use a fixed architecture so learning consists entirely of adjusting weights and thresholds.

Slide CS472 – Local Search 31

Genetic Programming

In **Genetic Programming**, programs are evolved instead of bit strings. Programs are represented by trees. For example:

$$\sin(x) + \sqrt{x^2 + y}$$

Slide CS472 - Local Search 33

${\bf Local~Search-Summary}$ Surprisingly efficient search method.

Wide range of applications.

any type of optimization / search task

Handles search spaces that are too large

(e.g., 10¹⁰⁰⁰) for systematic search

Often best available algorithm when
lack of global information.

Formal properties remain largely elusive.

Research area will most likely continue to thrive.

Slide CS472 – Local Search 35

Remarks on GA's

- In practice, several 100 to 1000's of strings. Value of crossover difficult to determine (so far).
- Crowding can occur when an individual that is much more fit than others reproduces like crazy, which reduces diversity in the population.
- In general, GA's are highly sensitive to the representation.
- Given enough compute time, it's the best search algorithm in some domains.