
Informed Methods: Heuristic Search

Informed Methods use problem-specific knowledge.

best-first search algorithms: Nodes are selected for

expansion based on an evaluation function, f(n).

Traditionally, f is a cost measure.

Use h(n) = estimated cost of the cheapest path from the

state at node n to a goal state (heuristic function)

Assumption: h(n) = 0 when n is a goal node.

Heuristic search is an attempt to search the most promising

paths first. Uses heuristics, or rules of thumb, to find the best

node to expand next.

Slide CS472 – Heuristic Search 1

Generic Best-First Search

1. Set L to be the initial node(s) representing the initial

state(s).

2. If L is empty, fail. Let n be the node on L that is “most

promising” according to f . Remove n from L.

3. If n is a goal node, stop and return it (and the path

from the initial node to n).

4. Otherwise, add successors(n) to L. Return to step 2.

Slide CS472 – Heuristic Search 2

Greedy Best-First Search

Let f(n) = h(n) = estimated cost from node n to nearest

goal node

Example: 8-puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

Slide CS472 – Heuristic Search 3

Suboptimal Best-First Search

3

42

1

1

1

1

goal

1

goal

There exist strategies that enable optimal paths to be found

without examining all possible paths.

Slide CS472 – Heuristic Search 4

A* Search

Goal: Finds the least-cost solution:

Mimimizes the total estimated solution cost.

g(n) Cost of reaching node n from initial node

h(n) Estimated cost from node n to nearest goal

A* evaluation function:

f(n) = g(n) + h(n)

f(n) Estimated cost of cheapest solution through n

Slide CS472 – Heuristic Search 5

Example

3

42

1

1

1

1

goal

1

goal

Slide CS472 – Heuristic Search 6

Admissibility

h∗(n) Actual cost to reach a goal from n.

A heuristic function h is optimistic or admissible if

h(n) ≤ h∗(n) for all nodes n.

If h is admissible, then the A* algorithm will never return

a suboptimal goal node. (h never overestimates the cost

of reaching the goal.)

Slide CS472 – Heuristic Search 7

Example

3

22

1

1

1

goal

1

goal

goal?

Slide CS472 – Heuristic Search 8

Proving the optimality of A∗

Assume h is admissible.

Proof assumes f is non-decreasing along any path from the root.

1. f = g + h; g must be non-decreasing because we’ve

disallowed negative costs on operators.

2. That means that the only thing that can happen to

make f decrease along a path from the root is that our

heuristic function is screwed up.

3. Situation: Node p, with f = 3 + 4 = 7; child n, with

f = 4 + 2 = 6.

Slide CS472 – Heuristic Search 9

4. But because any path through n is also a path through

p, we can see that the value 6 is meaningless, because we

already know the true cost is at least 7 (because h is

admissible).

5. So, make f = max(f(p), g(n) + h(n))

Slide CS472 – Heuristic Search 10

Proof of the optimality of A∗

Assume: h admissible; f non-decreasing along any path from the root.

Let G be an optimal goal state, with path cost f ∗

Let G2 be a suboptimal goal state, with path cost g(G2) > f ∗

n is a leaf node on an optimal path to G

Because h is admissible, we must have

f ∗ ≥ f(n).

Also, if n is not chosen over G2, we must have

f(n) ≥ f(G2).

Gives us f ∗ ≥ f(G2) = g(G2). (Then G2 is not suboptimal!)

Slide CS472 – Heuristic Search 11

A*

Optimal: yes
A* is optimally efficient: given the information in h,

no other optimal search method can expand fewer nodes.
Complete: Unless there are infinitely many nodes

with f(n) < f�. Assume locally finite:
(1) finite branching, (2) every operator costs
at least δ > 0.

Complexity (time and space): Still exponential because of
breadth-first nature. Unless |h(n) − h�| ≤ O(log(h�(n)),
with h� true cost of getting to goal.

Slide CS472 – Heuristic Search 12

IDA*

Memory is a problem for the A* algorithms.

IDA* is like iterative deepening, but uses an f -cost limit

rather than a depth limit.

At each iteration, the cutoff value is the smallest f -cost of

any node that exceeded the cutoff on the previous iteration.

Each iteration uses conventional depth-first search.

Slide CS472 – Heuristic Search 13

Recursive best-first search (RBFS)

Similar to a recursive DFS, but keeps track of the f -value of

the best alternative path available from any ancestor of the

current node.

If current node exceeds this limit, recursion unwinds back to

the alternative path, replacing the f -value of each node

along the path with the best f -value of its children.

(RBFS remembers the f -value of the best leaf in the

forgotten subtree.)

Slide CS472 – Heuristic Search 14

RBFS Example

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Sibiu

Arad

Timisoara

Timisoara

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 526

526 553

646 526

450591

646 526

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450 417
Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu,
 and Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
 and expanding Pitesti

(b) After unwinding back to Sibiu
 and expanding Fagaras

447

447

∞

∞

∞

417

417

Pitesti

Slide CS472 – Heuristic Search 15

SMA*

Simplified Memory-bounded A* Search

Proceeds just like A*, expanding the best leaf until memory

is full.

Drops the worst leaf node — the one the highest f -cost;

and stores this value in its parent node.

(Won’t know which way to go from this node, but we will

have some idea of how worthwhile it is to explore the node.)

Slide CS472 – Heuristic Search 16

Example: Admissible Heuristic

What if h(n) = h∗(n)?

f(n) = g(n) + h∗(n)

The perfect heuristic function!

Slide CS472 – Heuristic Search 17

Example: Admissible Heuristic

What if h(n) = 0?

f(n) = g(n) + h(n)

Slide CS472 – Heuristic Search 18

8-puzzle

1. hC = number of misplaced tiles

2. hM = Manhattan distance

Which one should we use?

hC ≤ hM ≤ h∗

Slide CS472 – Heuristic Search 19

Comparison of Search Costs on 8-Puzzle

Search Cost Effective Branching Factor

d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26

Slide CS472 – Heuristic Search 20

Constructing Admissible Heuristics

• Use an admissible heuristic derived from a relaxed

version of the problem.

• Use information from pattern databases that store

exact solutions to subproblems of the problem.

• Use inductive learning methods.

Slide CS472 – Heuristic Search 21

