
Intelligent Agents

agent: anything that can be viewed as perceiving its

environment through sensors and acting upon that

environment through actuators.

Agent behavior is determined by the agent function that

maps any given percept sequence to an action.

The agent function for an artificial agent will be

implemented by an agent program.
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A “Cornell AI Student” Agent

Agent requires access to environment through sensors:

visual, aural, touch, etc.

Available actions: talk, walk, do arithmetic, do boolean

logic, programming skills, etc.
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A Simple Reflex Agent
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Agents with Internal State
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Goal-Based Agents
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Problem Solving as Search

Search is a central topic in AI

— Originated with Newell and Simon’s work on

problem solving. Famous book:

“Human Problem Solving” (1972)

— Automated reasoning is a natural search task

— More recently: Given that almost all AI formalisms

(planning, learning, etc.) are NP-complete or worse,

some form of search is generally unavoidable

(no “smarter” algorithm available).
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Defining a Search Problem

State space – described by

initial state – starting state

actions – possible actions available

successor function; operators – given a particular

state x, returns a set of <action, successor> pairs
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A path is any sequence of states connected by a

sequence of actions.

Goal test – determines whether a given state is a goal

state.

Path cost – function that assigns a cost to a path; relevant

if more than one path leads to the goal, and we want the

shortest path.

Assumption: cost of a path is the sum of the costs of the

individual actions along the path; sum of the step costs,

which must be non-negative.
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The 8-Puzzle

States:

Initial state:

Goal test:

Successor function:

Path cost:
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Cryptarithmetic

SEND

+ MORE

--------

MONEY

Find substitution of digits for letters such

that the resulting sum is arithmetically correct.

Each letter must stand for a different digit.
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Cryptarithmetic, cont.

States: an 8-tuple indicating a (partial) assignment of

digits to letters.

Successor function: represents the act of assigning digits

to letters.

Goal test: all letters have been assigned digits and sum is

correct.

Path cost: ...all solutions are equally valid; step cost = 0.
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Solving a Search Problem: State Space Search

Input:

• Initial state

• Goal test

• Successor function

• Path cost

Output: path from initial state to goal. Solution quality is

measured by the past cost. state.

State space is not stored in its entirety by the computer.
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Generic Search Algorithm

L = make-queue(initial-state)

loop

node = remove-front(L) (and save in order

to return as part of path to goal)

if goal-test(node) = true return(path to goal)

S = successors(node)

insert(S,L)

until L is empty

return failure
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Search procedure defines a search tree

root node — initial state

children of a node — successor states

fringe of tree — L: states not yet expanded

stack: Depth-First Search (DFS).

queue: Breadth-First Search (BFS).

Search strategy — algorithm for deciding which leaf

node to expand next.
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Node Data Structure
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Solving the 8-Puzzle

Start State Goal State
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What would the search tree look like after the start state

was expanded?
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Evaluating a Search Strategy

Completeness: is the strategy guaranteed to find a

solution when there is one?

Time Complexity: how long does it take to find a

solution?

Space Complexity: how much memory does it need?

Optimality: does the strategy find the highest-quality

solution when there are several different solutions?
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Uninformed search: BFS

Consider paths of length 1, then of length 2, then of length

3, then of length 4,....
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Time and Memory Requirements for BFS – O(bd+1)

Let b = branching factor, d = solution depth, then the

maximum number of nodes generated is:

b + b2 + ... + bd + (bd+1 − b)
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Time and Memory Requirements for BFS – O(bd+1)

b = 10

10000 nodes/second

each node requires 1000 bytes of storage

depth nodes time memory

2 1100 .11 sec 1 meg

4 111,100 11 sec 106 meg

6 107 19 min 10 gig

8 109 31 hrs 1 tera

10 1011 129 days 101 tera

12 1013 35 yrs 10 peta

14 1015 3523 yrs 1 exa
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Uniform-cost Search

Use BFS, but always expand the lowest-cost node on the

fringe as measured by path cost g(n).
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Requirement: g(Successor(n)) ≥ g(n)
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Uninformed search: DFS
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DFS vs. BFS

Complete? Optimal? Time Space

BFS YES YES O(bd+1) O(bd+1)

DFS finite depth NO O(bm) O(bm)

m is maximum depth

Time

m = d — DFS typically wins

m > d — BFS might win

m is infinite — BFS probably will do better

Space

DFS almost always beats BFS
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Which search should I use?

Depends on the problem.

If there may be infinite paths, then depth-first is probably

bad. If goal is at a known depth, then depth-first is good.

If there is a large (possibly infinite) branching factor, then

breadth-first is probably bad.

(Could try nondeterministic search. Expand an open node

at random.)
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Iterative Deepening [Korf 1985]

Idea:

Use an artificial depth cutoff, c.

If search to depth c succeeds, we’re done. If not, increase c

by 1 and start over.

Each iteration searches using DFS.
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Iterative Deepening

Limit = 3

Limit = 2

Limit = 1

Limit = 0

 .....
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Space requirements? Same as DFS. Each search is just a

DFS.

Time requirements. Would seem very expensive!! BUT not

much different from single BFS or DFS to depth d.

Reason: Almost all work is in the final couple of layers.

E.g., binary tree: 1/2 of the nodes are in the bottom layer.

With b=10, 9/10th of the nodes in final layer!

So, repeated runs are on much smaller trees (i.e.,

exponentially smaller).
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Example:

b=10, d=5, the number of nodes generated in a BFS:

b + b2 + ... + bd + bd+1 − b =

10 + 100 + 1000 + 10,000 + 100,000 + 999,990 = 1,111,100

For IDS:

(d)b + (d − 1)b2 + ... + (1)bd =

50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Cost of repeating the work at shallow depths is not

prohibitive.
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Cost of Iterative Deepening

space: O(bd) as in DFS, time: O(bd)

b ratio of IDS to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02
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Bidirectional Search

GoalStart
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• Search forward from the start state and backward from

the goal state simultaneously and stop when the two

searches meet the middle.

• If branching factor = b from both directions, and

solution exists at depth d, then need only

O(2bd/2) = O(bd/2) steps.

• Example b = 10, d = 6 then BFS needs 1,111,111 nodes

and bidirectional search needs only 2,222.

– What does it mean to search backwards from a goal?

– What if there is more than one goal state? (chess).
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Comparing Search Strategies

Criterion Breadth- Uniform- Depth- Iterative Bidirectional

First Cost First Deepening (if applicable)

Time bd+1 bd bm bd bd/2

Space bd+1 bd bm bd bd/2

Optimal? yes yes no yes yes

Complete? yes yes no yes yes

***Note that many of the “yes’s” above have caveats, which

we discussed when covering each of the algorithms.
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