
Intelligent Agents

agent: anything that can be viewed as perceiving its

environment through sensors and acting upon that

environment through actuators.

Agent behavior is determined by the agent function that

maps any given percept sequence to an action.

The agent function for an artificial agent will be

implemented by an agent program.

Slide CS472 – Problem-Solving as Search 1

A “Cornell AI Student” Agent

Agent requires access to environment through sensors:

visual, aural, touch, etc.

Available actions: talk, walk, do arithmetic, do boolean

logic, programming skills, etc.

Slide CS472 – Problem-Solving as Search 2

A Simple Reflex Agent

Agent

E
n

viro
n

m
en

t

Sensors

What the world
is like now

What action I
should do nowCondition−action rules

Actuators

Slide CS472 – Problem-Solving as Search 3

Agents with Internal State

Agent

E
n

viro
n

m
en

t

Sensors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules

Actuators

Slide CS472 – Problem-Solving as Search 4

Goal-Based Agents

Agent

E
n

viro
n

m
en

t

Sensors

What it will be like
 if I do action A

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Goals

Actuators

Slide CS472 – Problem-Solving as Search 5

Problem Solving as Search

Search is a central topic in AI

— Originated with Newell and Simon’s work on

problem solving. Famous book:

“Human Problem Solving” (1972)

— Automated reasoning is a natural search task

— More recently: Given that almost all AI formalisms

(planning, learning, etc.) are NP-complete or worse,

some form of search is generally unavoidable

(no “smarter” algorithm available).

Slide CS472 – Problem-Solving as Search 6

Defining a Search Problem

State space – described by

initial state – starting state

actions – possible actions available

successor function; operators – given a particular

state x, returns a set of <action, successor> pairs

Slide CS472 – Problem-Solving as Search 7

A path is any sequence of states connected by a

sequence of actions.

Goal test – determines whether a given state is a goal

state.

Path cost – function that assigns a cost to a path; relevant

if more than one path leads to the goal, and we want the

shortest path.

Assumption: cost of a path is the sum of the costs of the

individual actions along the path; sum of the step costs,

which must be non-negative.

Slide CS472 – Problem-Solving as Search 8

The 8-Puzzle

States:

Initial state:

Goal test:

Successor function:

Path cost:

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

Slide CS472 – Problem-Solving as Search 9

Cryptarithmetic

SEND

+ MORE

MONEY

Find substitution of digits for letters such

that the resulting sum is arithmetically correct.

Each letter must stand for a different digit.

Slide CS472 – Problem-Solving as Search 10

Cryptarithmetic, cont.

States: an 8-tuple indicating a (partial) assignment of

digits to letters.

Successor function: represents the act of assigning digits

to letters.

Goal test: all letters have been assigned digits and sum is

correct.

Path cost: ...all solutions are equally valid; step cost = 0.

Slide CS472 – Problem-Solving as Search 11

Solving a Search Problem: State Space Search

Input:

• Initial state

• Goal test

• Successor function

• Path cost

Output: path from initial state to goal. Solution quality is

measured by the past cost. state.

State space is not stored in its entirety by the computer.

Slide CS472 – Problem-Solving as Search 12

Generic Search Algorithm

L = make-queue(initial-state)

loop

node = remove-front(L) (and save in order

to return as part of path to goal)

if goal-test(node) = true return(path to goal)

S = successors(node)

insert(S,L)

until L is empty

return failure

Slide CS472 – Problem-Solving as Search 13

Search procedure defines a search tree

root node — initial state

children of a node — successor states

fringe of tree — L: states not yet expanded

stack: Depth-First Search (DFS).

queue: Breadth-First Search (BFS).

Search strategy — algorithm for deciding which leaf

node to expand next.

Slide CS472 – Problem-Solving as Search 14

Node Data Structure

1

23

45

6

7

81

23

45

6

7

8

Node
DEPTH = 6

STATE

PARENT-NODE

ACTION = right

PATH-COST = 6

Slide CS472 – Problem-Solving as Search 15

Solving the 8-Puzzle

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

What would the search tree look like after the start state

was expanded?

Slide CS472 – Problem-Solving as Search 16

Evaluating a Search Strategy

Completeness: is the strategy guaranteed to find a

solution when there is one?

Time Complexity: how long does it take to find a

solution?

Space Complexity: how much memory does it need?

Optimality: does the strategy find the highest-quality

solution when there are several different solutions?

Slide CS472 – Problem-Solving as Search 17

Uninformed search: BFS

Consider paths of length 1, then of length 2, then of length

3, then of length 4,....

Slide CS472 – Problem-Solving as Search 18

Time and Memory Requirements for BFS – O(bd+1)

Let b = branching factor, d = solution depth, then the

maximum number of nodes generated is:

b + b2 + ... + bd + (bd+1 − b)

Slide CS472 – Problem-Solving as Search 19

Time and Memory Requirements for BFS – O(bd+1)

b = 10

10000 nodes/second

each node requires 1000 bytes of storage

depth nodes time memory

2 1100 .11 sec 1 meg

4 111,100 11 sec 106 meg

6 107 19 min 10 gig

8 109 31 hrs 1 tera

10 1011 129 days 101 tera

12 1013 35 yrs 10 peta

14 1015 3523 yrs 1 exa

Slide CS472 – Problem-Solving as Search 20

Uniform-cost Search

Use BFS, but always expand the lowest-cost node on the

fringe as measured by path cost g(n).

(a) (b)

S

0 S

A B C
1 5 15

5 15

S

A B C

G
11 S

A B C
15

G
11

G
10

S G

A

B

C

1 10

55

15 5

Requirement: g(Successor(n)) ≥ g(n)

Slide CS472 – Problem-Solving as Search 21

Uninformed search: DFS

Slide CS472 – Problem-Solving as Search 22

DFS vs. BFS

Complete? Optimal? Time Space

BFS YES YES O(bd+1) O(bd+1)

DFS finite depth NO O(bm) O(bm)

m is maximum depth

Time

m = d — DFS typically wins

m > d — BFS might win

m is infinite — BFS probably will do better

Space

DFS almost always beats BFS

Slide CS472 – Problem-Solving as Search 23

Which search should I use?

Depends on the problem.

If there may be infinite paths, then depth-first is probably

bad. If goal is at a known depth, then depth-first is good.

If there is a large (possibly infinite) branching factor, then

breadth-first is probably bad.

(Could try nondeterministic search. Expand an open node

at random.)

Slide CS472 – Problem-Solving as Search 24

Iterative Deepening [Korf 1985]

Idea:

Use an artificial depth cutoff, c.

If search to depth c succeeds, we’re done. If not, increase c

by 1 and start over.

Each iteration searches using DFS.

Slide CS472 – Problem-Solving as Search 25

Iterative Deepening

Limit = 3

Limit = 2

Limit = 1

Limit = 0

Slide CS472 – Problem-Solving as Search 26

Space requirements? Same as DFS. Each search is just a

DFS.

Time requirements. Would seem very expensive!! BUT not

much different from single BFS or DFS to depth d.

Reason: Almost all work is in the final couple of layers.

E.g., binary tree: 1/2 of the nodes are in the bottom layer.

With b=10, 9/10th of the nodes in final layer!

So, repeated runs are on much smaller trees (i.e.,

exponentially smaller).

Slide CS472 – Problem-Solving as Search 27

Example:

b=10, d=5, the number of nodes generated in a BFS:

b + b2 + ... + bd + bd+1 − b =

10 + 100 + 1000 + 10,000 + 100,000 + 999,990 = 1,111,100

For IDS:

(d)b + (d − 1)b2 + ... + (1)bd =

50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Cost of repeating the work at shallow depths is not

prohibitive.

Slide CS472 – Problem-Solving as Search 28

Cost of Iterative Deepening

space: O(bd) as in DFS, time: O(bd)

b ratio of IDS to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

Slide CS472 – Problem-Solving as Search 29

Bidirectional Search

GoalStart

Slide CS472 – Problem-Solving as Search 30

• Search forward from the start state and backward from

the goal state simultaneously and stop when the two

searches meet the middle.

• If branching factor = b from both directions, and

solution exists at depth d, then need only

O(2bd/2) = O(bd/2) steps.

• Example b = 10, d = 6 then BFS needs 1,111,111 nodes

and bidirectional search needs only 2,222.

– What does it mean to search backwards from a goal?

– What if there is more than one goal state? (chess).

Slide CS472 – Problem-Solving as Search 31

Comparing Search Strategies

Criterion Breadth- Uniform- Depth- Iterative Bidirectional

First Cost First Deepening (if applicable)

Time bd+1 bd bm bd bd/2

Space bd+1 bd bm bd bd/2

Optimal? yes yes no yes yes

Complete? yes yes no yes yes

***Note that many of the “yes’s” above have caveats, which

we discussed when covering each of the algorithms.

Slide CS472 – Problem-Solving as Search 32

