
Planning

A planning agent will construct plans to achieve its goals,

and then execute them.

Analyze a situation in which it finds itself and develop a

strategy for achieving the agent’s goal.

Achieving a goal requires finding a sequence of actions that

can be expected to have the desired outcome.

Slide CS472 – Planning 1

Problem Solving

Representation of actions – actions generate successor

states

Representation of states – all state representations are

complete

Representation of goals – contained in goal test and

heuristic function

Representation of plans – unbroken sequence of actions

leading from initial to goal state.

Slide CS472 – Planning 2

Planning Example

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

GOAL: Get a quart of milk and a bunch of bananas and a

variable-speed cord-less drill.

Slide CS472 – Planning 3

Planning Versus Problem Solving

(1) Open up the representation of states, goals and actions.

• States and goals represented by sets of sentences –

Have(Milk)

• Actions represented by rules that represent their

preconditions and effects: Buy(x) achieves Have(x)

This allows the planner to make direct connections between

states and actions.

Slide CS472 – Planning 4

Planning Versus Problem Solving

(2) Planner is free to add actions to the plan wherever they

are needed, rather than in an incremental sequence starting

at the initial state.

• No connection between the order of planning and the

order of execution.

• Representation of states as sets of logical sentences

makes this freedom possible.

Slide CS472 – Planning 5

Planning Versus Problem Solving

(3) Most parts of the world are independent of most other

parts.

• Can solve Have(Milk)∧Have(Bananas)∧Have(Drill)

using divide-and-conquer strategy.

• Can re-use subplans (go to supermarket)

Slide CS472 – Planning 6

Planning as a Logical Inference Problem

A

A

D

B

C

D

B C

Initial situation Goal situation

Axioms:

On(A,C), On(C,Table), On(D,B), On(B,Table), Clear(A),

Clear(D)

plus rules for moving things around...

Prove: On (A,B) ∧ On(B,C)

Slide CS472 – Planning 7

Planning as Deduction: Situation Calculus

In first-order logic, once a statement is shown to be true, it
remains true forever.

Situation calculus: way to describe change in first-order logic.

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

Result(Forward, S0)

Result(Turn (Right),
Result(Forward, S0))

Turn (Right)

Slide CS472 – Planning 8

Situation Calculus

fluents: functions and predicates that vary from one

situation to the next

on(A,C) on(A,C, S0)

at(agent, [1, 1]) at(agent, [1, 1], S0)

atemporal functions and predicates are also allowed

block(A)

gold(G1)

Slide CS472 – Planning 9

Situation Calculus: Actions

Actions are described by stating their effects.

possibility axiom: preconditions ⇒ Poss(a, s).

∀s∀x¬On(x, Table, s) ∧ Clear(x, s) ⇒
Poss(PlaceOnTable(x), s)]

effect axiom: Poss(a, s) ⇒ Changes that result from

taking the action.

∀s∀xPoss(PlaceOnTable(x), s)) ⇒
On(x, Table, Result(PlaceOnTable(x), s))

∀s∀y∀zOn(y, z, s) ∧ (z �= Table) ⇒ ¬On(y, Table, s)

Slide CS472 – Planning 10

Situation Calculus: Action Sequences

Result([], s) = s.

Result([a|seq], s) = Result(seq,Result(a, s)).

We’d like to be able to prove:

∃ seq On(A,B,Result(seq, S0)) ∧ On(B,C,Result(seq, S0))

which would produce, for example, the following:

On(A,B,Result([PoT (A), PoT (D), Put(B,C), Put(A,B)], S0))

∧On(B,C,Result([PoT (A), PoT (D), Put(B,C), Put(A,B)], S0))

Slide CS472 – Planning 11

The Frame Problem

Actions don’t specify what happens to objects not involved

in the action, but the logic framework requires that

information.

∀s∀xPoss(PoT (x), s)) ⇒ On(x, Table, Result(PoT (x), s))

Frame axioms: Inform the system about preserved relations.

∀s∀x∀y∀z[(On(x, y, s)∧(x �= z)) ⇒ On(x, y,Result(PoT (z), s))]

Slide CS472 – Planning 12

... and Its Relatives

representational frame problem: proliferation of frame

axioms.

Solution: use successor-state axioms

Action is possible ⇒ (Fluent is true in result state

⇔ (Action’s effect made it true ∨ It was true before and

action left it alone)).

inferential frame problem: have to carry each property

through all intervening situations during problem-

solving, even if the property remains unchanged

throughout

Slide CS472 – Planning 13

qualification problem: difficult, in the real world, to

define the circumstances under which a given action is

guaranteed to work

ramification problem: proliferation of implicit

consequences of actions.

Slide CS472 – Planning 14

The Need for Special Purpose Algorithms

So...We have a formalism for expressing goals and plans and

we can use resolution theorem proving to find plans.

Problems:• frame problem

• time to find plan can be exponential

• logical inference is semi-decidable

• resulting plan could have many irrelevant steps

We’ll need to:• restrict language

• use a special purpose algorithm called a planner

Slide CS472 – Planning 15

The STRIPS Language

States and Goals: Conjunctions of positive, function-free

literals. No variables.

Have (Milk) ∧ Have (Bananas) ∧ Have (Drill)

∧ At (Home)

Closed world assumption: any conditions that are not

mentioned in a state are assumed false.

Slide CS472 – Planning 16

Actions:

preconditions: conjunction of positive, function-free

literals that must be true before the operator can be

applied.

effects: conjunction of function-free literals; add list

and delete list.

Slide CS472 – Planning 17

STRIPS assumption

Every literal not mentioned in the effect remains unchanged

in the resulting state when the action is executed.

Avoids the representational frame problem.

Solution for the planning problem: an action sequence that,

when executed in the initial state, results in a state that

satisfies the goal.

Slide CS472 – Planning 18

STRIPS Actions

Move block x from block y to block z

preconds: On(x, y) ∧ Block(x) ∧ Block(z)

∧Clear(x) ∧ Clear(z)

effects: Add: On(x,z), Clear(y)

Delete: On(x,y), Clear(z)

Move block x from block y to Table

preconds: On(x, y) ∧ Block(x) ∧ Block(y) ∧ Clear(x)

effects: Add: On(x,Table), Clear(y)

Delete: On(x,y)

Slide CS472 – Planning 19

Move block x from Table to block z

preconds: On(x, Table) ∧ Block(x) ∧ Block(z)

∧Clear(x) ∧ Clear(z)

effects: Add: On(x,z)

Delete: On(x,Table), Clear(z)

Slide CS472 – Planning 20

Plan by Searching for a Satisfactory Sequence of

Actions

progression planner searches forward from the initial

situation to the goal situation

regression planner search backwards from the goal state

to the initial state

Heuristics: derive a relaxed problem; employ the subgoal

independence assumption.

Slide CS472 – Planning 21

Searching Plan Space

Alternative is to search through the space of plans rather

than the original state space.

Start with simple, incomplete partial plan; expand until

complete.

Operators: add a step, impose an ordering on existing

steps, instantiate a previously unbound variable.

Refinement Operators take a partial plan and add

constraints

Modification Operators are anything that is not a

refinement operator; take an incorrect plan and debug it.

Slide CS472 – Planning 22

Representation for Plans

Goal: RightShoeOn ∧ LeftShoeOn

Initial state: λ

Operators:

Action Preconds Effect

RightShoe RightSockOn RightShoeOn

RightSock λ RightSockOn

LeftShoe LeftSockOn LeftShoeOn

LeftSock λ LeftSockOn

Slide CS472 – Planning 23

Partial Plans

Partial Plan: RightShoe LeftShoe

Principle of Least Commitment says to only make choices

about things that you currently care about.

Partial order planner – can represent plans in which

some steps are ordered and others are not.

Total order planner considers a plan a simple list of steps

A linearization of P is a totally ordered plan that is

derived from a plan P by adding ordering constraints.

Slide CS472 – Planning 24

Defer Variable Binding

Planners must commit to bindings for variables

Example: Goal: Have(Milk) Action: Buy(item,store)

Principle of Least Commitment: Only make choices

about things that you care about, leaving other details to be

worked out later.

Buy(Milk,K-MART) versus Buy(Milk,store)

Fully instantiated plan: every variable is bound to a

constant.

Slide CS472 – Planning 25

Definition of a Plan

• A set of plan steps (actions).

• A set of step ordering constraints of the form Si ≺ Sj

• A set of variable binding constraints

• A set of causal links, written as Si
c−→ Sj

Slide CS472 – Planning 26

Initial Plan for Shoes and Socks

Initial plan: Start ≺ Finish

Finish

Start

Initial State

Finish

Start

Goal State

(a) (b)

LeftShoeOn, RightShoeOn

Slide CS472 – Planning 27

Partial Plan for Shoes and Socks

StartStartStart

Total Order Plans: Partial Order Plan:

Start

Left

Sock

Left

Shoe

Sock

Right

Shoe

Right

Finish

Start

Finish

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Start

Left

Sock

Shoe

Right

Finish

Right

Sock

Left

Shoe

Finish

Sock
Left

Right

Sock

Shoe
Left

Right

Shoe

Shoe

Right

Finish

Sock

Right

Left

Sock

Left

Shoe

Finish

Sock
Right

Shoe
Left

Left

Sock

Right

Shoe

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Slide CS472 – Planning 28

Planner Output

A solution is a complete, consistent plan.

A complete plan: every precondition of every step is

achieved by some other step.

A consistent plan: there are no contradictions in the

ordering or binding constraints. Contradiction occurs when

both Si ≺ Sj and Sj ≺ Si.

Slide CS472 – Planning 29

POP Example: STRIPS Actions

Action PreCond Effect

Go(there) At(here) At(there) ∧ ¬At(here)

Buy(x) At(store) ∧ Sells(store, x) Have(x)

Slide CS472 – Planning 30

POP Example: Initial Plan

Finish

Start

Have(Drill) Have(Milk) Have(Banana) At(Home)

At(Home) Sells(SM,Banana) Sells(SM,Milk) Sells(HWS,Drill)

Slide CS472 – Planning 31

A Partial Plan I

At(s), Sells(s,Drill) At(s), Sells(s,Milk) At(s), Sells(s,Bananas)

Finish

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Finish

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Slide CS472 – Planning 32

A Partial Plan II

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)

At(x)At(x)

At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

Slide CS472 – Planning 33

A Partial Plan III

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

At(Home) At(Home)

Slide CS472 – Planning 34

Protecting Causal Links

cL

cL

cLc cc

(a) (b) (c)

S 2

S 3

S 2

S 3

S 2

S 3

S1S11S

Slide CS472 – Planning 35

A Partial Plan III

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

At(Home) At(HWS)

At(SM)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

Go(Home)

Slide CS472 – Planning 36

Achieving At(Home)

Candidate link Threats

At(x) to initial state Go(HWS), Go(SM)

At(x) to Go(HWS) Go(SM)

At(x) to Go(SM) At(SM) preconds of Buy(Milk),

Buy(Bananas)

Solution: Link At(x) to Go(SM), but order Go(Home) to

come after Buy(Bananas) and Buy(Milk).

Slide CS472 – Planning 37

A final Plan

At(SM)

At(Home)

At(HWS)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(HWS) Sells(HWS,Drill)

At(SM) Sells(SM,Milk) At(SM) Sells(SM,Ban.)

Slide CS472 – Planning 38

function POP(initial, goal, operators) returns plan

plan�MAKE-MINIMAL-PLAN(initial, goal)
loop do

if SOLUTION?(plan) then return plan
Sneed, c� SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators, Sneed, c)
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns Sneed, c

pick a plan step Sneed from STEPS(plan)
with a precondition c that has not been achieved

return Sneed, c

procedure CHOOSE-OPERATOR(plan, operators, S need, c)

choose a step Sadd from operators or STEPS(plan) that has c as an effect
if there is no such step then fail
add the causal link Sadd

c

�� Sneed to LINKS(plan)
add the ordering constraint Sadd � Sneed to ORDERINGS(plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS(plan)
add Start � Sadd � Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si
c

�� Sj in LINKS(plan) do
choose either

Promotion: Add Sthreat� Si to ORDERINGS(plan)
Demotion: Add Sj � Sthreat to ORDERINGS(plan)

if not CONSISTENT(plan) then fail
end

Slide CS472 – Planning 39

Strengths of Partial-Order Planning Algorithms

• Takes a huge state space problem and solves in only a

few steps.

• Least commitment strategy means that search only

occurs in places where sub-plans interact.

• Causal links allow planner to recognize when to abandon

a doomed plan without wasting time exploring irrelevant

parts of the plan.

Slide CS472 – Planning 40

Practical Planners

STRIPS approach is insufficient for many practical planning

problems. Can’t express:

resources: Operators should incorporate resource

consumption and generation. Planners have to handle

constraints on resources efficiently.

time: Real-world planners need a better model of time.

hierarchical plans: Need the ability to specify plans at

varying levels of detail.

Also need to incorporate heuristics for guiding search.

Slide CS472 – Planning 41

Planning Graphs

• Data structure (graphs) that represents plans, and can

be efficiently constructed, and that allows for better

heuristic estimates.

• Graphplan: algorithm that processes the planning

graph, using backward search, to extract a plan.

• SATPlan: algorithm that translates a planning

problem into propositional axioms and applies a CSP

algorithm to find a valid plan.

Take CS672 to learn more!!!

Slide CS472 – Planning 42

Hierarchical Planning

Build
House

decomposes to

Obtain
Permit

Hire
Builder

Construction
Pay
Builder

Buy
Land

Get
Loan

Own Land

Have Money

Move
In

Have House

Buy
Land

Get
Loan

Own Land

Have Money

Move
In

Have House

Slide CS472 – Planning 43

Spacecraft Assembly, integration and verification

(AIV)

• OPTIMUM-AIV used by the European Space Agency to

AIV spacecraft.

• Generates plans and monitors their execution – ability

to re-plan is the principle objective.

• Uses O-Plan architecture – like partial-order planner,

but can represent time, resources and hierarchical plans.

Accepts heuristics for guiding search and records its

reasons for each choice.

Slide CS472 – Planning 44

Scheduling for Space Missions

• Planners have been used by the ground teams for the

Hubble space telescope and for the Voyager, Uosat-II

and ERS-1.

• Goal: coordinate the observational equipment, signal

transmitters and altitude and velocity-control

mechanism in order to maximize the value of the

information gained from observations while obeying

resource constraints on time and energy.

Slide CS472 – Planning 45

