Planning A planning agent will construct plans to achieve its goals, and then execute them. Analyze a situation in which it finds itself and develop a strategy for achieving the agent's goal. Achieving a goal requires finding a sequence of actions that can be expected to have the desired outcome. ### Slide CS472 – Planning 1 # Planning Example Talk to Parrot Buy a Dog Go To School Go To Supermarket Buy Tuna Fish Buy Arugula Buy Arugula Buy Arugula Buy Milk Sit in Chair Sit Some More Etc. Etc. ... Read A Book GOAL: Get a quart of milk and a bunch of bananas and a variable-speed cord-less drill. Slide CS472 - Planning 3 ### **Problem Solving** Representation of actions – actions generate successor states Representation of states – all state representations are complete Representation of goals – contained in goal test and heuristic function Representation of plans – unbroken sequence of actions leading from initial to goal state. ### Slide CS472 - Planning 2 ### Planning Versus Problem Solving - (1) Open up the representation of states, goals and actions. - States and goals represented by sets of sentences Have(Milk) - Actions represented by rules that represent their preconditions and effects: Buy(x) achieves Have(x) This allows the planner to make direct connections between states and actions. ### Planning Versus Problem Solving - (2) Planner is free to add actions to the plan wherever they are needed, rather than in an incremental sequence starting at the initial state. - No connection between the order of planning and the order of execution. - Representation of states as sets of logical sentences makes this freedom possible. Slide CS472 – Planning 5 ### Planning Versus Problem Solving - (3) Most parts of the world are independent of most other parts. - Can solve $Have(Milk) \wedge Have(Bananas) \wedge Have(Drill)$ using divide-and-conquer strategy. - Can re-use subplans (go to supermarket) Slide CS472 – Planning 6 ### Planning as a Logical Inference Problem ### **Axioms:** On(A,C), On(C,Table), On(D,B), On(B,Table), Clear(A), Clear(D) plus rules for moving things around... **Prove:** On $(A,B) \wedge On(B,C)$ ### Slide CS472 – Planning 7 ### Planning as Deduction: Situation Calculus In first-order logic, once a statement is shown to be true, it remains true forever. Situation calculus: way to describe change in first-order logic. Slide CS472 – Planning 8 ### Situation Calculus **fluents:** functions and predicates that vary from one situation to the next $$on(A, C)$$ $on(A, C, S_0)$ $at(agent, [1, 1])$ $at(agent, [1, 1], S_0)$ atemporal functions and predicates are also allowed block(A) $gold(G_1)$ ### Slide CS472 - Planning 9 ### Situation Calculus: Action Sequences Result([],s)=s. Result([a|seq], s) = Result(seq, Result(a, s)). We'd like to be able to prove: $\exists seq \ On(A, B, Result(seq, S_0)) \land On(B, C, Result(seq, S_0))$ which would produce, for example, the following: $On(A, B, Result([PoT(A), PoT(D), Put(B, C), Put(A, B)], S_0))$ $\land On(B, C, Result([PoT(A), PoT(D), Put(B, C), Put(A, B)], S_0))$ ### Slide CS472 – Planning 11 ### Situation Calculus: Actions Actions are described by stating their effects. **possibility axiom:** preconditions $\Rightarrow Poss(a, s)$. $\forall s \forall x \neg On(x, Table, s) \land Clear(x, s) \Rightarrow$ Poss(PlaceOnTable(x), s)] **effect axiom:** $Poss(a, s) \Rightarrow$ Changes that result from taking the action. $\forall s \forall x Poss(PlaceOnTable(x), s)) \Rightarrow$ On(x, Table, Result(PlaceOnTable(x), s)) $\forall s \forall y \forall z On(y, z, s) \land (z \neq Table) \Rightarrow \neg On(y, Table, s)$ ### Slide CS472 - Planning 10 ### The Frame Problem Actions don't specify what happens to objects not involved in the action, but the logic framework requires that information. $\forall s \forall x Poss(PoT(x), s)) \Rightarrow On(x, Table, Result(PoT(x), s))$ Frame axioms: Inform the system about preserved relations. $\forall s \forall x \forall y \forall z [(On(x, y, s) \land (x \neq z)) \Rightarrow On(x, y, Result(PoT(z), s))]$ ### ... and Its Relatives representational frame problem: proliferation of frame axioms. Solution: use successor-state axioms Action is possible \Rightarrow (Fluent is true in result state \Leftrightarrow (Action's effect made it true \vee It was true before and action left it alone)). inferential frame problem: have to carry each property through all intervening situations during problemsolving, even if the property remains unchanged throughout Slide CS472 – Planning 13 # Slide CS472 – Planning 14 ramification problem: proliferation of implicit qualification problem: difficult, in the real world, to guaranteed to work consequences of actions. define the circumstances under which a given action is ### The Need for Special Purpose Algorithms So...We have a formalism for expressing goals and plans and we can use resolution theorem proving to find plans. ### Problems: - frame problem - time to find plan can be exponential - logical inference is semi-decidable - resulting plan could have many irrelevant steps ### We'll need to: - restrict language - use a special purpose algorithm called a planner ### The STRIPS Language States and Goals: Conjunctions of positive, function-free literals. No variables. Have (Milk) \wedge Have (Bananas) \wedge Have (Drill) \wedge At (Home) Closed world assumption: any conditions that are not mentioned in a state are assumed false. Slide CS472 – Planning 15 ### **Actions:** **preconditions:** conjunction of positive, function-free literals that must be true before the operator can be applied. **effects:** conjunction of function-free literals; add list and delete list. ### Slide CS472 – Planning 17 ### STRIPS Actions Move block x from block y to block z **preconds:** $On(x,y) \wedge Block(x) \wedge Block(z)$ $\land Clear(x) \land Clear(z)$ effects: Add: On(x,z), Clear(y) Delete: On(x,y), Clear(z) Move block x from block y to Table **preconds:** $On(x,y) \wedge Block(x) \wedge Block(y) \wedge Clear(x)$ effects: Add: On(x,Table), Clear(y) Delete: On(x,y) ### Slide CS472 – Planning 19 ### STRIPS assumption Every literal not mentioned in the effect remains unchanged in the resulting state when the action is executed. Avoids the representational frame problem. Solution for the planning problem: an action sequence that, when executed in the initial state, results in a state that satisfies the goal. ### Slide CS472 – Planning 18 Move block x from Table to block z **preconds:** $On(x, Table) \wedge Block(x) \wedge Block(z)$ $\wedge Clear(x) \wedge Clear(z)$ effects: Add: On(x,z) Delete: On(x,Table), Clear(z) ## Plan by Searching for a Satisfactory Sequence of Actions **progression planner** searches forward from the initial situation to the goal situation regression planner search backwards from the goal state to the initial state Heuristics: derive a **relaxed problem**; employ the **subgoal independence** assumption. Slide CS472 – Planning 21 ### Representation for Plans Goal: $RightShoeOn \wedge LeftShoeOn$ Initial state: λ Operators: | Action | Preconds | Effect | |-----------|-------------|-------------| | RightShoe | RightSockOn | RightShoeOn | | RightSock | λ | RightSockOn | | LeftShoe | LeftSockOn | LeftShoeOn | | LeftSock | λ | LeftSockOn | Slide CS472 – Planning 23 ### Searching Plan Space Alternative is to search through the space of *plans* rather than the original state space. Start with simple, incomplete **partial plan**; expand until complete. **Operators:** add a step, impose an ordering on existing steps, instantiate a previously unbound variable. Refinement Operators take a partial plan and add constraints Modification Operators are anything that is not a refinement operator; take an incorrect plan and debug it. Slide CS472 - Planning 22 ### Partial Plans Partial Plan: RightShoe LeftShoe Principle of **Least Commitment** says to only make choices about things that you currently care about. Partial order planner – can represent plans in which some steps are ordered and others are not. Total order planner considers a plan a simple list of steps A linearization of P is a totally ordered plan that is derived from a plan P by adding ordering constraints. ### Defer Variable Binding Planners must commit to bindings for variables Example: Goal: Have(Milk) Action: Buy(item,store) Principle of Least Commitment: Only make choices about things that you care about, leaving other details to be worked out later. Buy(Milk,K-MART) versus Buy(Milk,store) Fully instantiated plan: every variable is bound to a constant. Slide CS472 - Planning 25 ### Definition of a Plan - A set of plan steps (actions). - A set of step ordering constraints of the form $S_i \prec S_j$ - A set of variable binding constraints - A set of causal links, written as $S_i \stackrel{c}{\longrightarrow} S_j$ Slide CS472 – Planning 27 Slide CS472 – Planning 28 ### Planner Output A solution is a complete, consistent plan. A complete plan: every precondition of every step is achieved by some other step. A consistent plan: there are no contradictions in the ordering or binding constraints. Contradiction occurs when both $S_i \prec S_j$ and $S_j \prec S_i$. Slide CS472 – Planning 29 # POP Example: Initial Plan Start At(Home) Sells(SM,Banana) Sells(SM,Milk) Sells(HWS,Drill) Have(Drill) Have(Milk) Have(Banana) At(Home) Finish Slide CS472 – Planning 31 ### POP Example: STRIPS Actions | Action | PreCond | Effect | |-----------|-----------------------------------|----------------------------------| | Go(there) | At(here) | $At(there) \wedge \neg At(here)$ | | Buy(x) | $At(store) \land Sells(store, x)$ | Have(x) | | | | | Slide CS472 - Planning 30 Slide CS472 – Planning 32 Slide CS472 – Planning 33 Slide CS472 – Planning 34 Slide CS472 – Planning 35 Slide CS472 – Planning 36 ### Achieving At(Home) Candidate link Threats At(x) to initial state Go(HWS), Go(SM) At(x) to Go(HWS) Go(SM) At(x) to Go(SM) At(SM) preconds of Buy(Milk), Buy(Bananas) **Solution:** Link At(x) to Go(SM), but order Go(Home) to come after Buy(Bananas) and Buy(Milk). ### Slide CS472 – Planning 37 Slide CS472 - Planning 39 Slide CS472 – Planning 38 ### Strengths of Partial-Order Planning Algorithms - Takes a huge state space problem and solves in only a few steps. - Least commitment strategy means that search only occurs in places where sub-plans interact. - Causal links allow planner to recognize when to abandon a doomed plan without wasting time exploring irrelevant parts of the plan. Slide CS472 – Planning 40 ### **Practical Planners** STRIPS approach is insufficient for many practical planning problems. Can't express: **resources:** Operators should incorporate resource consumption and generation. Planners have to handle constraints on resources efficiently. time: Real-world planners need a better model of time. **hierarchical plans:** Need the ability to specify plans at varying levels of detail. Also need to incorporate heuristics for guiding search. ### Slide CS472 – Planning 41 ### Hierarchical Planning Slide CS472 - Planning 43 ### Planning Graphs - Data structure (graphs) that represents plans, and can be efficiently constructed, and that allows for better heuristic estimates. - Graphplan: algorithm that processes the planning graph, using backward search, to extract a plan. - **SATPlan**: algorithm that translates a planning problem into propositional axioms and applies a CSP algorithm to find a valid plan. Take CS672 to learn more!!! Slide CS472 - Planning 42 # Spacecraft Assembly, integration and verification (AIV) - OPTIMUM-AIV used by the European Space Agency to AIV spacecraft. - Generates plans and monitors their execution ability to re-plan is the principle objective. - Uses O-Plan architecture like partial-order planner, but can represent time, resources and hierarchical plans. Accepts heuristics for guiding search and records its reasons for each choice. ### Scheduling for Space Missions - Planners have been used by the ground teams for the Hubble space telescope and for the Voyager, Uosat-II and ERS-1. - Goal: coordinate the observational equipment, signal transmitters and altitude and velocity-control mechanism in order to maximize the value of the information gained from observations while obeying resource constraints on time and energy.