
1943–1956 The Beginnings of AI

1943 McCulloch and Pitts show networks of neurons can

compute and learn any function

1950 Shannon (1950) and Turing (1953) wrote chess

programs

1951 Minsky and Edmonds build the first neural network

computer (SNARC)

1956 Dartmouth Conference – Newell and Simon brought a

reasoning program The Logic Theorist which proved

theorems.

Slide CS472 – Knowledge-Based Systems 1

1952–1969 The Good Years

1952 Samuel’s checkers player

1958 McCarthy designed LISP, helped invent time-sharing,

and created Advice Taker (a domain independent

reasoning system)

1960’s Microworlds – solving limited problems: SAINT

(1963), ANALOGY (1968), STUDENT (1967),

blocksworld invented.

1962 Perceptron Convergence Theorem is proved.

Slide CS472 – Knowledge-Based Systems 2

Example ANALOGY Problem

is to as is to:

1 2 3 4 5

Slide CS472 – Knowledge-Based Systems 3

Blocksworld

Slide CS472 – Knowledge-Based Systems 4

History of AI

1966–1974 A Dose of Reality

• Herb Simon (1957)

• Machine translation

• Knowledge-poor programs

• Intractable problems, lack of computing power (Lighthill

Report, 1973)

• Limitations in knowledge representation (Minsky and

Papert,1969)

Slide CS472 – Knowledge-Based Systems 5

Knowledge Representation

• Human intelligence relies on a lot of background

knowledge (the more you know, the easier many

tasks become / “knowledge is power”)

• E.g. SEND + MORE = MONEY puzzle.

• Natural language understanding

— Time flies like an arrow.

— Fruit flies like bananas.

— The spirit is willing but the flesh is weak. (English)

— The vodka is good but the meat is rotten. (Russian)

• Or: Plan a trip to L.A.

Slide CS472 – Knowledge-Based Systems 6

• Q. How did we encode (domain) knowledge so far?

For search problems?

For learning problems?

Fine for limited amounts of knowledge / well-defined domains.

Otherwise: knowledge-based systems approach.

Slide CS472 – Knowledge-Based Systems 7

Knowledge-Based Systems / Agents

Key components:

• knowledge base: a set of sentences expressed in some

knowledge representation language

• inference / reasoning mechanisms to query what is

known and to derive new information or make decisions

Natural candidate: logical language (propositional /

first-order) combined with a logical inference mechanism

How close to human thought?

In any case, appears reasonable strategy for machines.

Slide CS472 – Knowledge-Based Systems 8

Logic as a Knowledge Representation

Components:

syntax

semantics (link to the world)

logical reasoning

entailment: α |= β iff, in every model

in which α is true, β is also true.

inference algorithm

KB � α, i.e., α is derived from KB

To make it work: soundness and completeness.

Slide CS472 – Knowledge-Based Systems 9

Soundness and Completeness

An inference algorithm that derives only entailed sentences is
called sound or truth-preserving.

KB � α implies KB |= α.

An inference algorithm is complete if it can derive any
sentence that is entailed.

KB |= α implies KB � α.

Why so important?
Allow computer to ignore semantics and “just push symbols”!

Slide CS472 – Knowledge-Based Systems 10

Connecting Sentences to the World

Follows

Sentences

Facts

Sentence

Fact

Entails S
em

an
tics

S
em

an
tics

Representation

World

Slide CS472 – Knowledge-Based Systems 11

Tenuous Link to Real World

W
o

rld

input sentences

conclusions

User

?

All computer has are sentences (hopefully about the world).

Sensors can provide some grounding.

Slide CS472 – Knowledge-Based Systems 12

KR Language: Propositional Logic

Syntax: build sentences from atomic propositions, using

connectives ∧,∨,¬,⇒,⇔.

(and / or / not / implies / equivalence (biconditional))

E.g.: ((¬P) ∨ (Q ∧ R)) ⇒ S

Slide CS472 – Knowledge-Based Systems 13

Semantics

P Q �P P �Q P �Q P � Q P � Q

False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Note: ⇒ somewhat counterintuitive.

What’s the truth value of “5 is even implies Sam is smart”?

Slide CS472 – Knowledge-Based Systems 14

First-Order Logic as a Knowledge Representation

propositions: “It is raining” becomes RAINING

operators: ∨, ∧, ¬ or ∼, =,⇒, ⇔
predicates: Man(SOCRATES) for “Socrates is a man.”

On(A,B). Can be functions: on − top − of(A).

quantifiers:
All men are mortal.

∀x : Man(x) ⇒ Mortal(x)

Some man is mortal.

∃x : Man(x) ⇒ Mortal(x)

Slide CS472 – Knowledge-Based Systems 15

Reasoning Methods: Rules of Inference

1. Modus Ponens:

Assume: P ⇒ Q If raining, then soggy courts.

and P It is raining.

Then: Q Soggy Courts.

2. Modus Tollens:

Assume: P ⇒ Q If raining, then soggy courts.

and ¬Q No soggy courts.

Then: ¬P It is not raining.

Slide CS472 – Knowledge-Based Systems 16

Representing Facts

1. Pingali is a CS professor.

2. All CS professors are ENG professors.

3. Fuchs is the dean.

4. All ENG professors are a friend of the dean or don’t know

him.

5. Everyone is a friend of someone.

6. People only criticize deans they are not friends of.

7. Pingali criticized Fuchs.

Slide CS472 – Knowledge-Based Systems 17

Representing Subset Hierarchies

Member:

CSPROF (Pingali)

or

member(Pingali, CSPROF)

subset:

∀x : CSPROF (x) ⇒ ENGPROF (x)

or

isa(CSPROF,ENGPROF)

Slide CS472 – Knowledge-Based Systems 18

Is Pingali a friend of Fuchs?

¬ friend-of (Pingali, Fuchs)

Slide CS472 – Knowledge-Based Systems 19

Forward Chaining

Given a fact p to be added to the KB,

1. Find all implications I that have p as a premise

2. For each i in I, if the other premises in i are already

known to hold

(a) Add the consequent in i to the KB

Continue until no more facts can be inferred.

Slide CS472 – Knowledge-Based Systems 20

Backward Chaining

Given a fact q to be “proven”,

1. See if q is already in the KB. If so, return TRUE.

2. Find all implications, I, whose conclusion “matches” q.

3. Establish the premises of all i in I via backward

chaining.

Slide CS472 – Knowledge-Based Systems 21

Knowledge Engineering

1. Identify the task.

2. Assemble the relevant knowledge.

3. Decide on a vocabulary of predicates, functions, and

constants.

4. Encode general knowledge about the domain.

5. Encode a description of the specific problem instance.

6. Pose queries to the inference procedure and get answers.

7. Debug the knowledge base.

Slide CS472 – Knowledge-Based Systems 22

Inference Procedures: Theoretical Results

• There exist complete and sound proof procedures for
propositional and FOL.
– Propositional logic

∗ Use the definition of entailment directly. Proof
procedure is exponential in n, the number of symbols.

∗ In practice, can be much faster...
∗ Polynomial-time inference procedure exists when KB is

expressed as Horn clauses: P1 ∧ P2 ∧ . . . ∧ Pn ⇒ Q

where the Pi and Q are nonnegated atoms.

Slide CS472 – Knowledge-Based Systems 23

– First-Order
∗ Godel’s completeness theorem showed that a proof

procedure exists...
∗ But none was demonstrated until Robinson’s 1965

resolution algorithm.
• Entailment in first-order logic is semidecidable.

Slide CS472 – Knowledge-Based Systems 24

Resolution Rule of Inference

Assume: E1 ∨ E2 playing tennis or raining

and ¬E2 ∨ E3 not raining or working

Then: E1 ∨ E3 playing tennis or working

Slide CS472 – Knowledge-Based Systems 25

General Resolution Rule

If (L1 ∨ L2 ∨ . . . Lk) is true,

and (¬Lk ∨ Lk+1 ∨ . . . Lm) true,

then we can conclude that

(L1 ∨ L2 ∨ . . . Lk−1 ∨ Lk+1 ∨ . . . ∨ Lm) is true.

Slide CS472 – Knowledge-Based Systems 26

Algorithm: Resolution Proof

• Negate the theorem to be proved, and add the result to

the list of axioms.

• Put the list of axioms into conjunctive normal form.

• Until there is no resolvable pair of clauses,

– Find resolvable clauses and resolve them.

– Add the results of resolution to the list of clauses.

– If NIL (empty clause) is produced, stop and report

that the (original) theorem is true.

• Report that the (original) theorem is false.

Slide CS472 – Knowledge-Based Systems 27

Resolution Example

Example: Prove ¬P

Axioms:

Regular CNF

Axiom 1: P → Q ¬P ∨ Q

2: Q → R ¬Q ∨ R

3: ¬R

Slide CS472 – Knowledge-Based Systems 28

Resolution Example (cont.)

1. ¬P ∨ Q Axiom 1

2. ¬Q ∨ R Axiom 2

3. ¬R Axiom 3

4. P Assume opposite

5. Q Resolve 4 and 1

6. R Resolve 5 and 2

7. nil Resolve 6 with 3

Slide CS472 – Knowledge-Based Systems 29

Resolution Example: FOL

Example: Prove bird(tweety)

Axioms:

Regular CNF

1: ∀x : feathers(x) → bird(x)

2: feathers(tweety)

3:

Slide CS472 – Knowledge-Based Systems 30

Resolution Theorem Proving

• sound (for propositional and FOL)

• complete (for propositional and FOL)

Procedure may seem cumbersome but note that can be

easily automated. Just “smash” clauses until empty clause

or no more new clauses.

Slide CS472 – Knowledge-Based Systems 31

Resolution

I put KB in CNF (clausal) form

all variables universally quantified

main trick: “skolemization” to remove existentials

idea: invent names for unkown objects known to exist

II use unification to match atomic sentences

III apply resolution rule to the clausal set combined

with negated goal. Attempt to generate empty clause.

Slide CS472 – Knowledge-Based Systems 32

Converting more complicated axioms to CNF

Axiom:

∀x : brick(x) → ((∃y : on(x, y) ∧ ¬pyramid(y))

∧ (¬∃y : on(x, y) ∧ on(y, x))

∧ (∀y : ¬brick(y) → ¬equal(x, y)))

¬brick(x) ∨ on(x, support(x))

¬brick(w) ∨ ¬pyramid(support(w))

¬brick(u) ∨ ¬on(u, y) ∨ ¬on(y, u)

¬brick(v) ∨ brick(z) ∨ ¬equal(v, z)

Slide CS472 – Knowledge-Based Systems 33

1. Eliminate Implications

Substitute ¬E1 ∨ E2 for E1 → E2

∀x : brick(x) → ((∃y : on(x, y) ∧ ¬pyramid(y))

∧ (¬∃y : on(x, y) ∧ on(y, x))

∧ (∀y : ¬brick(y) → ¬equal(x, y)))

∀x : ¬brick(x) ∨ ((∃y : on(x, y) ∧ ¬pyramid(y))

∧ (¬∃y : on(x, y) ∧ on(y, x))

∧ (∀y : ¬(¬brick(y)) ∨ ¬equal(x, y)))

Slide CS472 – Knowledge-Based Systems 34

2. Move negations down to the atomic formulas

¬(E1 ∧ E2) ⇐⇒ (¬E1) ∨ (¬E2)

¬(E1 ∨ E2) ⇐⇒ (¬E1) ∧ (¬E2)

¬(¬E1) ⇐⇒ E1

¬∀x : E1(x) ⇐⇒ ∃x : ¬E1(x)

¬∃x : E1(x) ⇐⇒ ∀x : ¬E1(x)

∀x : ¬brick(x) ∨
((∃y : on(x, y) ∧ ¬pyramid(y))

∧ (¬∃y : on(x, y) ∧ on(y, x))

∧ (∀y : ¬(¬brick(y)) ∨ ¬equal(x, y)))

Slide CS472 – Knowledge-Based Systems 35

3. Eliminate Existential Quantifiers

Skolemization

Harder cases:

∀x : ∃y : father(y, x) becomes ∀x : father(S1(x), x)

There is one argument for each universally quantified

variable whose scope contains the Skolem function.

Easy case:

∃x : President(x) becomes President(S2)

∀x : ¬brick(x) ∨ ((∃y : on(x, y) ∧ ¬pyramid(y)) ∧ . . .

Slide CS472 – Knowledge-Based Systems 36

4. Rename variables as necessary

We want no two variables of the same name.

∀x : ¬brick(x) ∨ ((on(x, S1(x)) ∧ ¬pyramid(S1(x)))

∧ (∀y : (¬on(x, y) ∨ ¬on(y, x)))

∧ (∀y : (brick(y) ∨ ¬equal(x, y))))

∀x : ¬brick(x) ∨ ((on(x, S1(x)) ∧ ¬pyramid(S1(x)))

∧ (∀y : (¬on(x, y) ∨ ¬on(y, x)))

∧ (∀z : (brick(z) ∨ ¬equal(x, z))))

Slide CS472 – Knowledge-Based Systems 37

5. Move the universal quantifiers to the left

This works because each quantifier uses a unique variable

name.

∀x : ¬brick(x) ∨ ((on(x, S1(x)) ∧ ¬pyramid(S1(x)))

∧ (∀y : (¬on(x, y) ∨ ¬on(y, x)))

∧ (∀z : (brick(z) ∨ ¬equal(x, z))))

∀x∀y∀z : ¬brick(x) ∨ ((on(x, S1(x)) ∧ ¬pyramid(S1(x)))

∧ (¬on(x, y) ∨ ¬on(y, x))

∧ (brick(z) ∨ ¬equal(x, z)))

Slide CS472 – Knowledge-Based Systems 38

6. Move disjunctions down to the literals

E1 ∨ (E2 ∧ E3) ⇐⇒ (E1 ∨ E2) ∧ (E1 ∨ E3)

∀x∀y∀z : (¬brick(x) ∨ (on(x, S1(x)) ∧ ¬pyramid(S1(x))))

∧ (¬brick(x) ∨ ¬on(x, y) ∨ ¬on(y, x))

∧ (¬brick(x) ∨ brick(z) ∨ ¬equal(x, z))

∀x∀y∀z : (¬brick(x) ∨ on(x, S1(x)))

∧ (¬brick(x) ∨ ¬pyramid(S1(x)))

∧ (¬brick(x) ∨ ¬on(x, y) ∨ ¬on(y, x))

∧ (¬brick(x) ∨ brick(z) ∨ ¬equal(x, z))

Slide CS472 – Knowledge-Based Systems 39

7. Eliminate the conjunctions

∀x∀y∀z : (¬brick(x) ∨ on(x, S1(x)))

∧ (¬brick(x) ∨ ¬pyramid(S1(x)))

∧ (¬brick(x) ∨ ¬on(x, y) ∨ ¬on(y, x))

∧ (¬brick(x) ∨ brick(z) ∨ ¬equal(x, z))

∀x : ¬brick(x) ∨ on(x, S1(x))

∀x : ¬brick(x) ∨ ¬pyramid(S1(x))

∀x∀y : ¬brick(x) ∨ ¬on(x, y) ∨ ¬on(y, x)

∀x∀z : ¬brick(x) ∨ brick(z) ∨ ¬equal(x, z)

Slide CS472 – Knowledge-Based Systems 40

8. Rename all variables, as necessary, so no two have

the same name

∀x : ¬brick(x) ∨ on(x, S1(x))

∀x : ¬brick(x) ∨ ¬pyramid(S1(x))

∀x∀y : ¬brick(x) ∨ ¬on(x, y) ∨ ¬on(y, x)

∀x∀z : ¬brick(x) ∨ brick(z) ∨ ¬equal(x, z)

∀x : ¬brick(x) ∨ on(x, S1(x))

∀w : ¬brick(w) ∨ ¬pyramid(S1(w))

∀u∀y : ¬brick(u) ∨ ¬on(u, y) ∨ ¬on(y, u)

∀v∀z : ¬brick(v) ∨ brick(z) ∨ ¬equal(v, z)

Slide CS472 – Knowledge-Based Systems 41

9. Eliminate the universal quantifiers

¬brick(x) ∨ on(x, S1(x))

¬brick(w) ∨ ¬pyramid(S1(w))

¬brick(u) ∨ ¬on(u, y) ∨ ¬on(y, u)

¬brick(v) ∨ brick(z) ∨ ¬equal(v, z)

Slide CS472 – Knowledge-Based Systems 42

Algorithm: Putting Axioms into Clausal Form

• Eliminate the implications.

• Move the negations down to the atomic formulas.

• Eliminate the existential quantifiers.

• Rename the variables, if necessary.

• Move the universal quantifiers to the left.

• Move the disjunctions down to the literals.

• Eliminate the conjunctions.

• Rename the variables, if necessary.

• Eliminate the universal quantifiers.

Slide CS472 – Knowledge-Based Systems 43

Unification

Unify (p,q) takes two atomic sentences p and q and

returns a substitution that makes p and q look the same.

Rules for substitutions:

• Can replace a variable by a constant.

• Can replace a variable by a variable.

• Can replace a variable by a function expression, as long

as the function expression does not contain the variable.

Unifier: a substitution that makes two clauses resolvable.

v1/C; v2/v3; v4/f(...)

Slide CS472 – Knowledge-Based Systems 44

Unification — Purpose

Given:

Knows(John, x) → Hates(John, x)

Knows(John, Jim)

Derive:

Hates(John, Jim)

Need unifier {x/Jim} for resolution to work.

(simplest case)

Slide CS472 – Knowledge-Based Systems 45

¬Knows(John, x) ∨ Hates(John, x)

Knows(John, Jim)

How do we resolve? First, match them.

Solution:

UNIFY(Knows(John, x),Knows(John, Jim)) = {x/Jim}
Gives

¬Knows(John, Jim) ∨ Hates(John, Jim) and

Knows(John, Jim)

Conclude by resolution

Hates(John, Jim)

Slide CS472 – Knowledge-Based Systems 46

Unification (example)

one rule:

Knows(John, x) → Hates(John, x)

facts:

Knows(John, Jim)

Knows(y, Leo)

Knows(z,Mother(z))

Knows(x, Jane)

Who does John hate?

Slide CS472 – Knowledge-Based Systems 47

UNIFY(Knows(John, x),Knows(John, Jim)) = {x/Jim}
UNIFY(Knows(John, x),Knows(y, Leo)) = {x/Leo, y/John}
UNIFY(Knows(John, x),Knows(z, Mother(z))) =
{z/John, x/Mother(John)}
UNIFY(Knows(John, x),Knows(x, Jane)) = fail

Slide CS472 – Knowledge-Based Systems 48

Most General Unifier

In cases where there is more than one substitution choose

the one that makes the least commitment (most general)

about the bindings.

UNIFY(Knows(John, x),Knows(y, z))

= {y/John, x/z}
or {y/John, x/z, z/Freda}
or {y/John, x/John, z/John}
or

See R&N for general unification algorithm. O(n2)with

Refutation

Slide CS472 – Knowledge-Based Systems 49

Example

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

Slide CS472 – Knowledge-Based Systems 50

Original Sentences (Plus Background Knowledge)

1. ∃x : Dog(x) ∧ Owns(Jack, x)

2. ∀x; (∃y Dog(y) ∧ Owns(x, y)) → AnimalLover(x)

3. ∀x; AnimalLover(x) → (∀y Animal(y) →
¬Kills(x, y))

4. Kills(Jack, Tuna) ∨ Kills(Curiosity, Tuna)

5. Cat(Tuna)

6. ∀x : Cat(x) → Animal(x)

Slide CS472 – Knowledge-Based Systems 51

Conjunctive Normal Form

1. Dog(D) (D is the function that finds Jack’s dog)

2. Owns(Jack,D)

3. ¬Dog(S(x)) ∨ ¬Owns(x, S(x)) ∨ AnimalLover(x)

4. ¬AnimalLover(w) ∨ ¬Animal(y) ∨ ¬Kills(w, y)

5. Kills(Jack, Tuna) ∨ Kills(Curiosity, Tuna)

6. Cat(Tuna)

7. ¬Cat(z) ∨ Animal(z)

Slide CS472 – Knowledge-Based Systems 52

Proof by Resolution

Slide CS472 – Knowledge-Based Systems 53

Proof by Resolution

{y/D}

{x/Jack} {x/Tuna}

{y/Tuna}

{x/Jack}

{ }

{ }

Dog(D)

Owns(Jack,D)

AnimalLover(Jack)

Cat(Tuna)

Animal(Tuna)

Kills(Jack,Tuna)

False

>=Kills(Jack,Tuna) False>=Kills(Curiosity,Tuna) False

>=Owns(x,D) AnimalLover(x)

> >=AnimalLover(x) Kills(x,Tuna) False

>=Cat(x) Animal(x)
>> >=AnimalLover(x) Animal(y) Kills(x,y) False

>

Kills(Jack,Tuna} Kills(Curiosity,Tuna)

> >=Dog(y) Owns(x,y) AnimalLover(x)

Slide CS472 – Knowledge-Based Systems 54

{y/D}

{x/Jack} {x/Tuna}

{y/Tuna}

{x/Jack}

{ }

{ }

Dog(D)

Owns(Jack,D)

AnimalLover(Jack)

Cat(Tuna)

Animal(Tuna)

Kills(Jack,Tuna)

False

>=Kills(Jack,Tuna) False>=Kills(Curiosity,Tuna) False

>=Owns(x,D) AnimalLover(x)

> >=AnimalLover(x) Kills(x,Tuna) False

>=Cat(x) Animal(x)

>> >=AnimalLover(x) Animal(y) Kills(x,y) False

>

Kills(Jack,Tuna} Kills(Curiosity,Tuna)

> >=Dog(y) Owns(x,y) AnimalLover(x)

Slide CS472 – Knowledge-Based Systems 55

Completeness

Resolution with unification applied to clausal form, is a

complete inference procedure.

In practice, still significant search problem!

Many different search strategies: resolution strategies.

Slide CS472 – Knowledge-Based Systems 56

Strategies for Selecting Clauses

unit-preference strategy: Give preference to resolutions
involving the clauses with the smallest number of literals.

set-of-support strategy: Try to resolve with the negated
theorem or a clause generated by resolution from that clause.

subsumption: Eliminates all sentences that are subsumed (i.e.,
more specific than) an existing sentence in the KB.

May still require exponential time.

Slide CS472 – Knowledge-Based Systems 57

Proofs can be lengthy

A relatively straightforward KB can quickly

overwhelm general resolution methods.

Resolution strategies reduce the problem somewhat,

but not completely.

As a consequence, many practical Knowledge Representation

formalisms in AI use a restricted form

and specialized inference.

Slide CS472 – Knowledge-Based Systems 58

Practical Knowledge-Based Systems

• Theorem provers / logic programming

• Production systems

forward chaining / if-then-rules / expert systems

• Frame systems and semantic networks

• Description logics

Slide CS472 – Knowledge-Based Systems 59

Theorem provers / logic programming

Theorem provers: generally based on resolution

many different strategies to improve efficiency

Logic programming: program statements directly in

restricted FOL.

Execution: search for proof of goal/query

using backward chaining with depth first-search.

In certain cases too inefficient.

Slide CS472 – Knowledge-Based Systems 60

Production systems

• rich history in AI

• “expert system” boom in 70’s / 80’s

Basic idea:

capture knowledge of human expert in a

large set of “if-then” rules

(really, logical implication ⇒)

“production rules”

Slide CS472 – Knowledge-Based Systems 61

Components of Rule-Based Systems

working memory: set of positive literals with no variables

rule memory: set of inference rules

p1 ∧ p2 . . . → a1 ∧ a2 . . .

where the pi are literals, and the ai are actions to take

when the pi are all satisfied

rule interpreter: inference engine

Slide CS472 – Knowledge-Based Systems 62

Sample Knowledge Base

Working Memory

(in robot room1)

(armempty robot)

(in table room1)

(on cup table)

(object table)

(object cup)

(room room1)

(room room2)

Slide CS472 – Knowledge-Based Systems 63

1. (in robot ?x) ∧ (room ?y) →
(walk ?x ?y) ∧ (add (in robot ?y))∧ (delete (in robot ?x))

2. (in robot ?x) ∧ (in ?y ?x) ∧ (object ?y) ∧ (not (at robot ?y))
→ (walk ?x ?y) ∧ (add (at robot ?y))

3. (in robot ?x) ∧ (at robot ?y) ∧ (clear ?y) ∧ (armempty robot)
∧ (room ?z) → (push ?y ?z) ∧ (add (in robot ?z)) ∧ (add (in
?y ?z)) ∧ (delete (in robot ?x)) ∧ (delete (in ?y ?x))

4. (at robot ?x) ∧ (armempty robot) ∧ (on ?y ?x) →
(pickup ?y) ∧ (add (holding robot ?y)) ∧ (add (clear ?x)) ∧
(delete (armempty robot)) ∧ (delete (on ?y ?x))

5. (holding robot ?x) → (putdown ?x) ∧ (add (armempty
robot)) ∧ (delete (holding robot ?x)) ∧ (add (on ?x floor))

Slide CS472 – Knowledge-Based Systems 64

Reasoning with Rules

Forward Reasoning

1. Until no rule can fire or goal state is achieved,

(a) Find all rules whose left sides match assertions in

working memory.

(b) Pick some to execute; modify working memory by

applying the right sides of the rules.

Slide CS472 – Knowledge-Based Systems 65

Three Parts to Forward-Chaining Rule Interpreter

Match: identifying which rules are applicable at any given

point in the reasoning

Conflict Resolution: selecting which of many rules should

be applied at any given point in the reasoning

Execute: execute the right-hand side of the rule

Slide CS472 – Knowledge-Based Systems 66

Example: forward chaining

Goal: (in table room2)

1. Rule 1 x = room1, y = room1, y = room2

Rule 2 x = room1, y = table

Choose randomly; assume rule 2.

Walk to table.

Add: (at robot table)

2. Rule 1 same bindings

Rule 2?

Rule 4 x = table, y = cup

Slide CS472 – Knowledge-Based Systems 67

Choose randomly; assume rule 4.

Pick-up cup.

Add: (holding robot cup)

(clear table)

Delete: (armempty robot)

3. Rule 1 same bindings

Rule 5 x = cup

Choose randomly; assume rule 5.

Putdown cup.

Add: (armempty robot)

Add: (on cup floor)

Slide CS472 – Knowledge-Based Systems 68

Delete: (holding robot cup)

4. Rule 1 same bindings

Rule 3 x = room1, y = table, z = room1 or room2

Choose randomly; assume rule 3.

Push table (to) room2.

Add: (in robot room2)

(in table room2)

Delete: (in robot room1)

(in table room1)

Slide CS472 – Knowledge-Based Systems 69

Matching for Forward-Chaining

• requires smart indexing of the rules

• requires unification

Problem: For practical systems, applying unification in a

straightforward manner will be very inefficient.

Rete algorithm: network-based data structure facilitates

unification.

Slide CS472 – Knowledge-Based Systems 70

Successes in Rule-Based Reasoning

Expert systems

• DENDRAL (Buchanan et al., 1969)

• MYCIN (Feigenbaum, Buchanan, Shortliffe)

• PROSPECTOR (Duda et al., 1979)

• R1 (McDermott, 1982)

Slide CS472 – Knowledge-Based Systems 71

Successes in Rule-Based Reasoning

• DENDRAL (Buchanan et al., 1969)

– infers molecular structure from the information

provided by a mass spectrometer

– generate-and-test method

– if there are peaks at x_1 and x_2 s.t.

x_1 + x_2 = M + 28

x_1 - 28 is a high peak

x_2 - 28 is a high peak

At least one of x_1 and x_2 is high

then there is a ketone subgroup

Slide CS472 – Knowledge-Based Systems 72

• MYCIN (Feigenbaum, Buchanan, Shortliffe)

– diagnosis of blood infections

– 450 rules; performs as well as experts

– incorporated certainty factors

If: (1) the stain of the organism is

gram-positive, and

(2) the morphology of the organism is

coccus, and

(3) the growth conformation of the organism

is clumps,

then there is suggestive evidence (0.7) that the

identity of the organism is staphylococcus.

Slide CS472 – Knowledge-Based Systems 73

• PROSPECTOR (Duda et al., 1979)

– correctly recommended exploratory drilling at a

geological site

– rule-based system founded on probability theory

• R1 (McDermott, 1982)

– designs configurations of computer components

– about 10,000 rules

– uses meta-rules to change context

If: current context is ?x

then: deactivate ?x context

and activate ?y context

Slide CS472 – Knowledge-Based Systems 74

Cognitive Modeling with Rule-Based Systems

SOAR is a general architecture for building intelligent

systems.

• Long term memory consists of rules.

• Working memory describes current state.

• All problem solving, including deciding what rule to

execute, is state space search.

• Successful rule sequences are chunked into new rules.

• Control strategy embodied in terms of meta-rules.

Slide CS472 – Knowledge-Based Systems 75

Example Syntax for Control Rule

Meta-rule

Under conditions A and B,

Rules that do {not} mention X

{at all,

in their LHS,

in their RHS }

will

{definitely be useless,

probably be useless, ...

probably be especially useful,

definitely be especially useful }

Slide CS472 – Knowledge-Based Systems 76

Advantages of Knowledge-Based Systems

1. Expressibility*

2. Simplicity of inference procedures*

3. Modifiability*

4. Explainability

5. Machine readability

6. Parallelism*

Slide CS472 – Knowledge-Based Systems 77

Disadvantages of Knowledge-Based Systems

1. Difficulties in expressibility

2. Undesirable interactions among rules

3. Non-transparent behavior

4. Difficult debugging

5. Slow

6. Where does the knowledge base come from???

Slide CS472 – Knowledge-Based Systems 78

