Reinforcement Learning

So far, we had a well-defined set of training examples.
What if feedback is not so clear?
E.g., when playing a game, only after many actions

final result: win, loss, or draw.

Issue: learning via delayed rewards / delayed feedback.

One success: Tesauro’s backgammon player (TD Gammon)
Start from random play; millions of games

World-level performance (changed game itself)

Imagine agent wandering around in environment.

How does it learn utility values of each state?
(i.e., what are good / bad states? avoid bad ones...)

Reinforcement learning will tell us how! Variations:

environment accessible or inaccessible

have model of environment and effects of action...or not
rewards in terminal states only; or in any state

agent can be passive (watch) or active (explore)
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Reinforcement Learning for Backgammon

In backgammon: states = boards.
Only clear feedback in final states (win/loss).

We want to know utility of the other states.

Intuitively: utility = chance of winning

At first, we only know this for the end states.
Reinforcement learning: computes for intermediate
states. Play by moving to maximum utility states!

back to simplified world ...
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Passive Learning in a Known, Accessible
Environment

Agent just wanders from state to state.

Each transition is made with a fixed probability.

Initially: only two known reward positions:

State (4,2) — a loss / poison / reward —1 (utility)
State (4,3) — a win / food / reward +1 (utility)

How does the agent learn about the utility, i.e.,
expected value, of the other states?
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Three strategies:
(a) “Direct Sampling” (Adaptive control theory)
naive updating - LMS rule

(b) “Calculation” / “Equation solving”

dynamic programming
(¢) “in between (a) and (b)”
Temporal Difference Learning — TD learning

used for backgammon
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Naive updating (LMS approach)
Widrow and Hoff [1960]

(a) “Sampling” — agent makes random runs
through environment; collect statistics on
final payoff for each state (e.g. when at (2,3),
how often do you reach +1 vs. —17)
Learning algorithm keeps a running average
for each state. Provably converges to true
expected values (utilities).
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U table of current utilities

e a unique state in the environment
percepts list of e’s seen so far

M model of environment

N table of visit frequencies

function LMS-UPDATE(U, €, percepts, M, N) returns an updated U

if TERMINAL €] then reward-to-go« O
for each e in percepts(starting at end) do

reward-to-go « reward-to-go + REWARD[ &/]

U[STATE[@]] +— RUNNING-AVERAGE(U[STATE[@]], reward-to-go, N[STATE[&]])
end

Naive updating: direct utility estimation
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Naive updating: direct utility estimation

RMS error in utility

0 200 400 600 800 1000
Number of epochs

Problems

Ignores structure of transitions which impose strong

additional constraints.

The actual utility of a state is constrained to be the
probability-weighted average of its successors’ utilities, plus

its own reward.

Main effect: slow convergence.
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Example where LMS does poorly
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Dynamic programming

Consider U (3, 3)
From figure we see that

U(3,3) =0.33 x U(4,3) +0.33 x U(2,3) + 0.33 x U(3,2)
=0.33 x 1.0 4+ 0.33 x 0.0886 + 0.33 x —0.4430

= 0.2152
Check e.g. U(3,1) yourself.
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Utilities follow basic laws of probabilities:

write down equations; solve for unknowns.

Utilities follow from:
U(i) = R(i) +>; M;;U(j) (%)

(note: i, j over states.)

R(7) is the reward associated with being in state i.
(often non-zero for only a few end states)

M; ; is the probability of transition from state i to j.
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Dynamic programming style methods can be used to solve
the set of equations.

Major drawback: number of equations and number

of unknowns.

E.g. for backgammon: roughly 10%° equations with

10°° unknowns. Infeasibly large.
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Temporal difference learning
Combine “sampling” with “calculation”

Or stated differently: TD-learning uses a sampling
approach to solve the set of equations.

Consider the transitions, observed by a wandering
agent.

Use the observed transitions to adjust the utilities
of the observed states to bring them closer to

the constraint equations.
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Temporal difference learning

When observing a transition from ¢ to 7,
bring U (i) value closer to that of U(yj)
Use update rule:
U(i) <= U(i) + a(R(i) + U(j) = U@@)  (x)

« is the learning rate parameter

rule is called the temporal-difference or TD
equation (because we take the difference in utilities
between successive states).
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function TD-UPDATE(U, e, percepts, M, N) returnsthe utility table U

if TERMINAL7€] then

U[STATE[€]] + RUNNING-AVERAGE(U[STATE[€]], REWARD[ €], N[STATE[€]])
elseif perceptscontains more than one element then

€' <+ the penultimate element of percepts

i, j « STATE[€], STATE[€]

U[i] « U[i] + a(N[i])(REwaRD[€] + U[j] - U[i])
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At first blush, the rule:
U(i) <= U(i) + a(R(i) + U(j) — U()) ()

may appear to be a bad way to solve/approximate:
U(i) = R(i) + X; Mi;U(j) (x)

Note that (xx) brings U(7) closer to U(j) but
in (%) we really want the weighted average
over the neighboring states!
Issue resolves itself, because over time, we sample
from the transitions out of 7. So, successive applications
of (xx) average over neighboring states.
(keep «v appropriately small)
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Performance

Runs noisier than Naive Updating (averaging),
but smaller error.

In our 4x3 world, we get a root-mean-square error of less
than 0.07 after 1000 examples.

Also, note that compared to Dynamic Programming
we only deal with observed states during sample runs.
L.e., in backgammon consider only a few hundreds of thousands
of states out of 10°°. Represent utility function

implicitly (no table) in neural network.
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TD-learning

0.6

0.5

04

03 1

02 r

RMS error in utility

01 r

0 200 400 600 800 1000
Number of epochs

Reinforcement learning is a very rich area

of study.

In some sense, touches on much of the core of Al
“How does an agent learn to take the right actions

i its environment?”

In general, pick action that leads to state with
highest utility as learned so far.
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Extensions

— Active learning — exploration.

now and then make new (non utility optimizing move)

— Learning action-value functions
Q(a,i) denotes value of taking action a in state i

we have: U(i) = maz,Q(a, i)

— Generalization in reinforcement learning
Use implicit representation of utility function
e.g. a neural network as in backgammon.
Input nodes encode board position;
activation of output node gives utility.
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