Announcements
- Hidden Figures: Tonight 6:30 + through Sunday
- HW3: due date delayed to Monday at noon
 problem 3: shouldn't have more than ~20 clauses

Today
Textbook Sections 18.4.2, 18.4.3, 18.6, 18.7

Background:
Classification learning problem

Given: \(D = (\tilde{x}_1, \tilde{y}_1), (\tilde{x}_2, \tilde{y}_2), \ldots, (\tilde{x}_n, \tilde{y}_n) \)

Find: \(h(\tilde{x}) \approx \tilde{y} \)

\(\Rightarrow h(\tilde{x}) \) with low error

Example of an error function on an example \(\tilde{x} \)
\(E_h(\tilde{x}) = (\tilde{y} - h(\tilde{x}))^2 \) — also called “loss”
\(= \text{Loss}_h(\tilde{x}) \)

Error of a hypothesis \(h \) across all possible \(\tilde{x} \)
\(E_h = \int_{\tilde{x}} E_h(\tilde{x}) \, p(\tilde{x}) \, d\tilde{x} \) — Error weighted by probability of seeing \(\tilde{x} \)

Empirical error on data
\(\text{Error}_h = \frac{1}{m} \sum_{i=1}^{m} E_h(\tilde{x}^{(i)}) \)

Common approach to classifier learning:
Find an \(h \) with minimal empirical error
\(\text{argmin}_h \text{Error}_h \)
Returning to perceptions

Linear Separability

A set of data is linearly separable if

\[\exists \mathbf{w} \text{ such that for all } i \quad h_\mathbf{w}(\mathbf{x}_i) = f(\mathbf{x}_i) \]

(or, stated in terms of empirical error

\[\exists \mathbf{w} \text{ such that } \text{Error}_{h_\mathbf{w}} = 0 \]

For linear classifiers we'll write Error_\mathbf{w} rather than Error_{h_\mathbf{w}}

Surprising Feature of Perceptrons

1. Representation analogous to a neuron
2. Learns similar to a neuron
3. Can prove it learns (sometimes)!

Perception Convergence Theorem

If there is a \(\mathbf{w} \) such that Error_\mathbf{w} = 0

then there is an \(\mathbf{w}' \) such that the perception learning rule will find a \(\mathbf{w}' \) for which Error_{\mathbf{w}'} = 0

\[[\text{For any } \mathbf{x}, \text{ if } \alpha \text{ decays as } O \left(\frac{1}{t} \right) \text{ where } t \]
\[\text{is how many updates have taken place - for example, } \]
\[\frac{100}{1000+} \text{ - then the perception will converge] } \]

Recall that the update rule is

\[w_j \leftarrow w_j + \alpha x (f(x) - h(x)) \]

Momentary digression to linear regression...
Formula for a line:
\[f(x) = w_1 x + w_0 \]

Regression:

Given \((x_1', y_1'), \ldots, (x_m', y_m')\)

Find \(w_0, w_1\) that minimizes

\[
\frac{1}{m} \sum_{i=1}^{m} (y_i - (w_1 x_i' + w_0))^2
\]

\[= \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i(x))
\]

Solution:

\[w_1 = \frac{m (\sum x_i y_i') - (\sum x_i')(\sum y_i')}{m (\sum x_i^2') - (\sum x_i')^2}
\]

\[w_0 = \frac{\sum y_i' - w_1 \sum x_i'}{m}
\]

Can find the \(w_0 + w_1\) without search

Generalizes to \(\hat{x} = (x_1, \ldots, x_n)\) \(\hat{w} = (w_0, w_1, \ldots, w_n)\)

Can also learn them from the data using gradient descent on the error function

Repeat

For \(j = 0\) to \(n\) \(\langle\text{update each weight by a small amount}\rangle\)

\[w_j \leftarrow w_j - \alpha \frac{\partial \text{Loss}}{\partial w_j} \]

(Recall that Loss is another term for Error)

Until \(\langle\text{stopping criterion}\rangle\)
For linear regression

\[\text{Loss}_w (\bar{x}) = (f(\bar{x}) - h_w (\bar{x}))^2 \]

and the update rule simplifies to

\[w_j \leftarrow w_j - \alpha \sum_{i=1}^{m} \bar{x}_i (f(\bar{x}_i) - h_w (\bar{x}_i)) \]

This is a "batch" update rule, in that it computes the error on all data for each update.

Can instead do this incrementally, updating weights on a per example basis

Known as Stochastic Gradient Descent

Repeat

For \(i = 1 \) to \(m \) \(< \text{iterate over the data} >\)

For \(j = 0 \) to \(n \) \(< \text{iterate over the features} >\)

\[w_j \leftarrow w_j - \alpha \frac{\partial \text{Loss}_w (\bar{x}_i)}{\partial w_j} \]

Until \(<\text{stopping criterion}>\)

[Typically reorder the data each time]

If \[\text{Loss}_w (\bar{x}) = (f(\bar{x}) - h_w (\bar{x}))^2 \]

the update simplifies to

\[w_j \leftarrow w_j - \alpha \bar{x}_j (f(\bar{x}_i) - h_w (\bar{x}_i)) \]

Same as the Perceptron Learning Rule

Stochastic Gradient Descent is one of the key methods in many forms of deep learning today.
Perception problems

1. Problem: Can't represent XOR and other functions.
 Solution: Multilayer networks.

2. Problem: Unclear how to train lower layers.
 Solution: Approximate threshold units.

\[h_{\vec{w}}(\vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}} \]