Reinforcement Learning

Reinforcement Learning

- Assumptions we made so far:
 - Known state space S
 - Known transition model T(s, a, s')
 - Known reward function R(s)
 - not realistic for many real agents

Reinforcement Learning:

- Learn optimal policy with a priori unknown environment
- Assume fully observable state(i.e. agent can tell its state)
- Agent needs to explore environment (i.e. experimentation)

Passive Reinforcement Learning

- Task: Given a policy π , what is the utility function U^{π} ?
 - Similar to Policy Evaluation, but unknown T(s, a, s') and R(s)

Approach: Agent experiments in the environment

Trials: execute policy from start state until in terminal state.

$$(1,1)_{-0.04} \rightarrow (1,2)_{-0.04}$$

$$\Rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04}$$

$$\Rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04}$$

$$\Rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$(1,1)_{-0.04} \rightarrow (1,2)_{-0.04}$$

$$\Rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04}$$

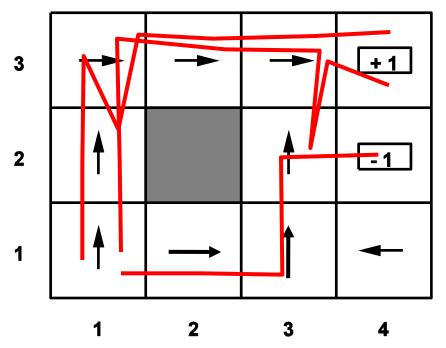
$$\Rightarrow (3,3)_{-0.04} \rightarrow (3,2)_{-0.04}$$

$$\Rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$(1,1)_{-0.04} \rightarrow (2,1)_{-0.04}$$

$$\Rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04}$$

$$\Rightarrow (4,2)_{-1.0}$$



Direct Utility Estimation

Data: Trials of the form

$$-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04}$$
$$\rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04}$$
$$\rightarrow (3,2)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$-(1,1)_{-0.04} \rightarrow (2,1)_{-0.04} \rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (4,2)_{-1.0}$$

• Idea:

- Average reward over all trials for each state independently
- From data above, estimate U(1,1)

Direct Utility Estimation

Data: Trials of the form

$$-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04}$$
$$\rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04}$$
$$\rightarrow (3,2)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$-(1,1)_{-0.04} \rightarrow (2,1)_{-0.04} \rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (4,2)_{-1.0}$$

• Idea:

- Average reward over all trials for each state independently
- From data above, estimate U(1,2)

Direct Utility Estimation

- Why is this less efficient than necessary?
 - Ignores dependencies between states $U^{\pi}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') U^{\pi}(s')$

Adaptive Dynamic Programming (ADP)

Idea:

- Run trials to learn model of environment (i.e. T and R)
 - Memorize R(s) for all visited states
 - Estimate fraction of times action a from state s leads to s'
- Use PolicyEvaluation Algorithm on estimated model

Data: Trials of the form

- $-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04}$ $\rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$
- $-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04}$ $\rightarrow (3,2)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$
- $(1,1)_{-0.04} \rightarrow (2,1)_{-0.04} \rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (4,2)_{-1.0}$

ADP

$$-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$$

$$-(1,1)_{-0.04} \rightarrow (2,1)_{-0.04} \rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (4,2)_{-1.0}$$

Problem?

- Can be quite costly for large state spaces
- For example, Backgammon has 10⁵⁰ states
- → Learn and store all transition probabilities and rewards
- → PolicyEvaluation needs to solve linear program with 10⁵⁰ equations and variables.

Temporal Difference (TD) Learning

- If policy led U(1,3) to U(2,3) all the time, we would expect that
 - $U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3)$
- R(s) should be equal $U^{\pi}(s) \gamma U^{\pi}(s')$, so
- $U^{\pi}(s) = U^{\pi}(s) + \alpha [R(s) + \gamma U^{\pi}(s') U^{\pi}(s)]$
 - $-\alpha$ is learning rate. α should decrease slowly over time, so that estimates stabilize eventually.

From observation, $U(1,3)=0.84 \rightarrow U(2,3)=0.92$ And R = -0.04

Is U(1,3) too low or too high?

A=Too Low B=Too high

Temporal Difference (TD) Learning

• Idea:

- Do not learn explicit model of environment!
- Use update rule that implicitly reflects transition probabilities.

Method:

- Init $U^{\pi}(s)$ with R(s) when first visited
- After each transition, update with $U^{\pi}(s) = U^{\pi}(s) + \alpha [R(s) + \gamma U^{\pi}(s') U^{\pi}(s)]$
- $-\alpha$ is learning rate. α should decrease slowly over time, so that estimates stabilize eventually.

Properties:

- No need to store model
- Only one update for each action (not full PolicyEvaluation)

Active Reinforcement Learning

- Task: In an a priori unknown environment, find the optimal policy.
 - unknown T(s, a, s') and R(s)
 - Agent must experiment with the environment.
- Naïve Approach: "Naïve Active PolicyIteration"
 - Start with some random policy
 - Follow policy to learn model of environment and use ADP to estimate utilities.
 - − Update policy using $\pi(s) \leftarrow \operatorname{argmax}_{a} \Sigma_{s'} T(s, a, s') U^{\pi}(s')$
- Problem:
 - Can converge to sub-optimal policy!
 - By following policy, agent might never learn T and R everywhere.
 - → Need for exploration!

Exploration vs. Exploitation

Exploration:

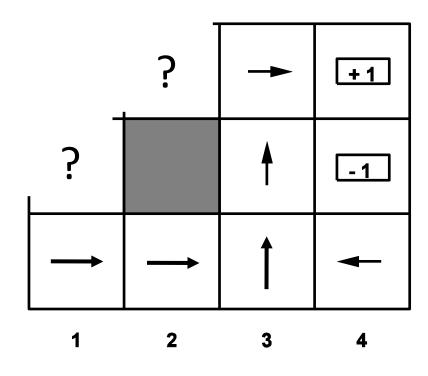
- Take actions that explore the environment
- Hope: possibly find areas in the state space of higher reward
- Problem: possibly take suboptimal steps

Exploitation:

- Follow current policy
- Guaranteed to get certair expected reward

Approach:

- Sometimes take rand steps
- Bonus reward for states that have not been visited often yet



Q-Learning

 Problem: Agent needs model of environment to select action via

$$argmax_a \Sigma_{s'} T(s, a, s') U^{\pi}(s')$$

• Solution: Learn action utility function Q(a,s), not state utility function U(s). Define Q(a,s) as

$$U(s) = max_a Q(a,s)$$

- Bellman equation with Q(a,s) instead of U(s) Q(a,s) = R(s) + $\gamma \Sigma_{s'} T(s, a, s') \max_{a'} Q(a',s')$
- TD-Update with Q(a,s) instead of U(s) $Q(a,s) \leftarrow Q(a,s) + \alpha [R(s) + \gamma \max_{a'} Q(a',s') Q(a,s)]$
- Result: With Q-function, agent can select action without model of environment

Q-Learning Illustration

3			-	+1
2	Q(up,(1,2)) Q(right,(1,2)) Q(down,(1,2)) Q(left,(1,2))			-1
1	Q(up,(1,1)) Q(right,(1,1)) Q(down,(1,1)) Q(left,(1,1))	Q(up,(2,1)) Q(right,(2,1)) Q(down,(2,1)) Q(left,(2,1))		

Function Approximation

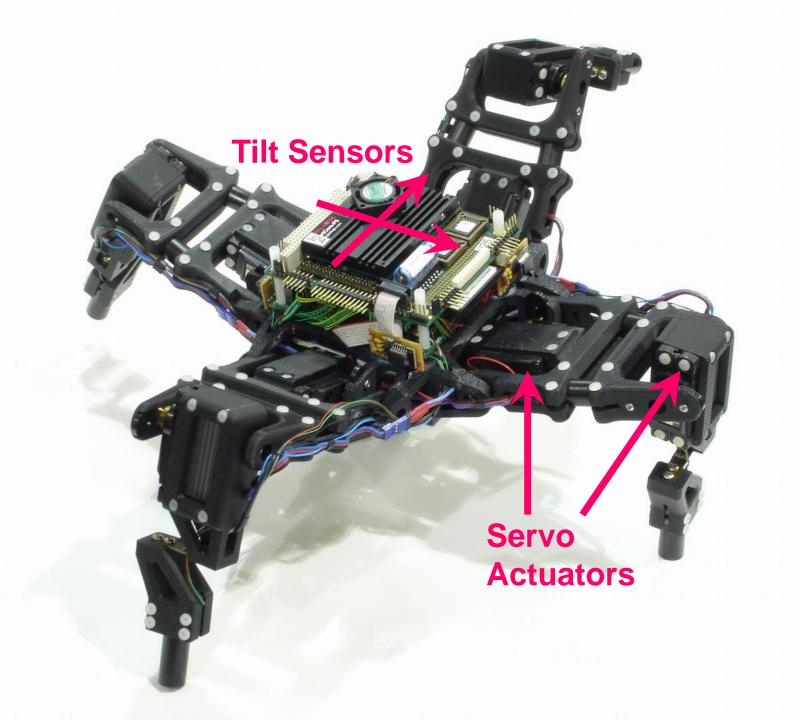
• Problem:

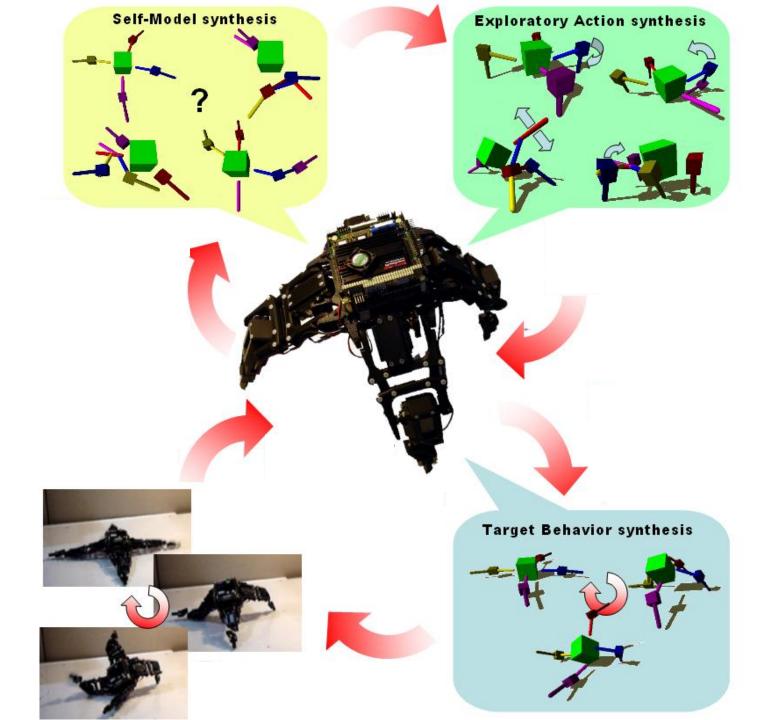
- Storing Q or U,T,R for each state in a table is too expensive, if number of states is large
- Does not exploit "similarity" of states (i.e. agent has to learn separate behavior for each state, even if states are similar)

• Solution:

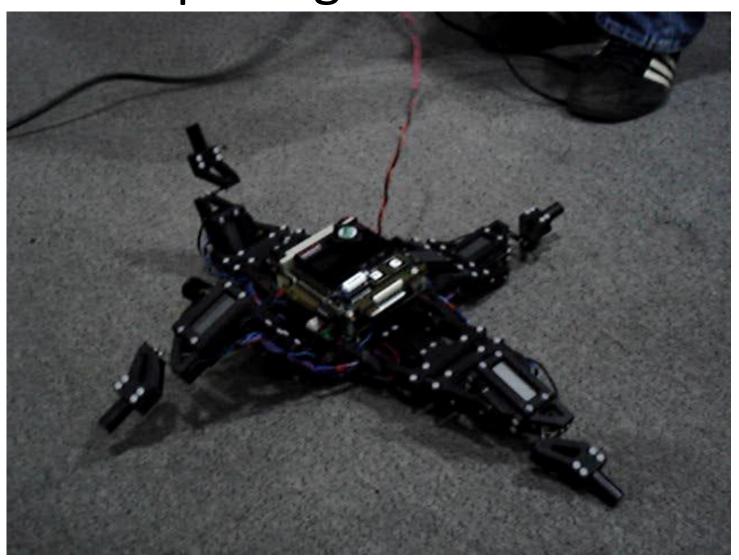
- Approximate function using parametric representation $U(s) = \vec{w} \cdot \Phi(s)$
- For example:
 - Φ(s) is feature vector describing the state
 - "Material values" of board
 - Is the queen threatened?

— ...

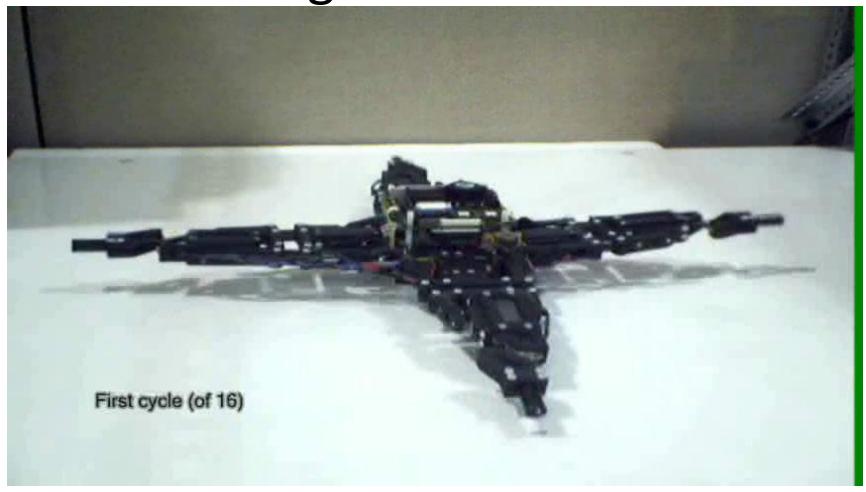




Morphological Estimation



Emergent Self-Model



Damage Recovery

