Foundations of Artificial Intelligence

CS4700  - Fall 2008
Cornell University
Department of Computer Science

 

The numbers in [] brackets are the relevant chapters or sections  of the [Russell/Norvig] textbook.

The slides are organized in modules. Typically each module covers a chapter of the textbook, presented in  one or more lectures..

 

Lecture

Date

Topic

Reading (R&N)

Slides

Comments

1,2

8/29

9/1

Course overview; What is AI?

 

[1]

Introduction

AI Timeline

Artificial Intelligence - Alive and Kicking

AI Reaches the Golden Years

Take a Moment to Raise a Glass to the Wonderful, Underappreciated AI

AI in the News

3

9/3

Structure of intelligent agents and environments

[2]

Agents

 

4,5

9/5

9/8

Problems and Problem Spaces

 Uninformed Search

[3]

Search1

 

6,7

9/10

9/12

 

Informed Search

[4.1; 4.2]

Search2

A* Wikipedia

DIMACS Challenge: Shortest Path

8,9

9/15

9/17

 

CSP: Search and Inference

[5]

CSP1

CSP - Wikipedia

Online guide to CP

CP conference

CP 2002 (Cornell)

10

9/19

 

CSP: Global Constraints, AllDiff

[5]

A filtering algorithm for constraints of difference in CSPs, Regin 94

(see CMS)

CSP2

 

11,12

9/22

9/24

 

Adversarial search

[6]

Game Playing

Computer Beats Pro at US Go Congress

13,14

9/26

9/29

 

Local search

[4.3,5.3]

Local Search

 

15,16,17

10/1

10/3

10/6

 

Instance Hardness

Randomization in Complete Search

Search-Wrap-Up

 [pages 224-225]

 

Instance Hardness

Randomized Backtrack Search    

 

 

18

10/8

 

Midterm

 

 

  

 

 

19

10/10

 

Knowledge-base Agents: Knowledge and Inference; Mine Sweeper and Wumpus World; Logic Entailment

 [7]

 

 Logic1   

 

 

20

10/15

 

Propositional Logic: Syntax, Semantics

 [7]

 Logic2   

 

21/22

10/20

10/22

 

Propositional Logic: Inference

 [7]

 Logic3      

 

23/24

10/24

10/27

 

Sat Encodings and Sat Solvers

Learning in Sat

 [7]

 Logic4  

Sat-learning        

Turing Award: Model Checking

25/26/27

10/29

10/31

11/03

First Order Logic: Syntax and semantics. Knowledge engineering in FOL.

First Order Logic: Inference

 [8]

 

[9]

Logic5

 

Logic6   

 

28/29/30

11/05

11/07

11/10

Intro to machine learning

Decision Trees

 [18.1; 18.2]

[18.3]

Intro-Learning

DT1

ML Glossary

Weka (Collection of machine learning algorithms)

31/32

11/12

11/14

 

Computational Learning Theory

PAC Learning

Decision Lists

 

 [18.5]

 

PAC

 

33

11/17

 

Noise and Overfitting

 [18.3]

DT2

 

34

11/19

 

Introduction to Neural Networks

 [20.5]

 

Intro-ANN

 IBM plans "brain-like" computers

35

11/24

 

Neural Network Concepts

Perceptron Learning

 [20.5]

 

ANN1

ANN2

 

36

11/26

 

Expressiveness of Perceptrons

 [20.5]

 

ANN3

 

 

37

12/1

 

Multi-Layer Networks Backpropagation

K- Nearest Neighbor

 [20.5]

 [20.4]

ANN4

 K-NN

 

38

12/3

 

Support Vector Machines

Ensemble Learning

Exam Info

 [20.6]

 [18.4]

SVM

Ensemble Learning

Exam Info

 

SVM Light

Netflix Prize