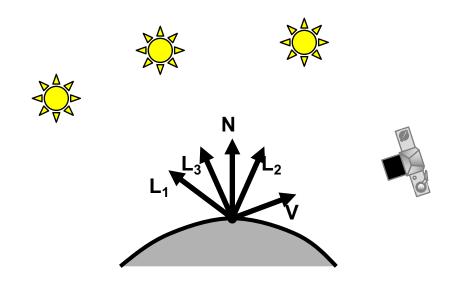
Photometric stereo

Multiple Images: Photometric Stereo

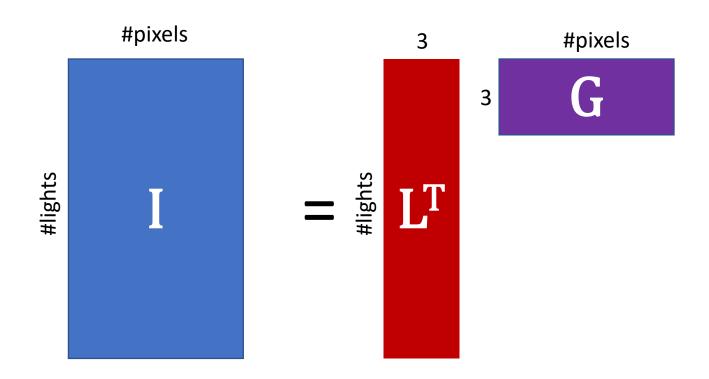


Photometric stereo

$$I = \rho \mathbf{L} \cdot \mathbf{N}$$
$$I = \rho \mathbf{N}^T \mathbf{L}$$
$$\mathbf{G} = \rho \mathbf{N}$$

Multiple pixels: matrix form

$$\mathbf{I} = \mathbf{L}^T \mathbf{G}$$



Normal equations

$$\|\mathbf{I} - \mathbf{L}^T \mathbf{G}\|^2 = \mathbf{I}^T \mathbf{I} + \mathbf{G}^T \mathbf{L} \mathbf{L}^T \mathbf{G} - 2 \mathbf{G}^T \mathbf{L} \mathbf{I}$$

Take derivative with respect to G and set to 0

$$2\mathbf{L}\mathbf{L}^{T}\mathbf{G} - 2\mathbf{L}\mathbf{I} = 0$$

$$\Rightarrow \mathbf{G} = (\mathbf{L}\mathbf{L}^{T})^{-1}\mathbf{L}\mathbf{I}$$

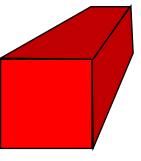
Estimating depth from normals

- So we got surface normals, can we get depth?
- Yes, given boundary conditions
- Normals provide information about the derivative

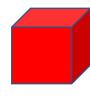
Brief detour: Orthographic projection

- Perspective projection
 - $x = \frac{X}{Z}$, $y = \frac{Y}{Z}$
- If all points have similar depth
 - $Z \approx Z_0$
 - $x \approx \frac{X}{Z_0}$, $y \approx \frac{Y}{Z_0}$
 - $x \approx cX$, $y \approx cY$
- A scaled version of orthographic projection

•
$$x = X$$
, $y = Y$



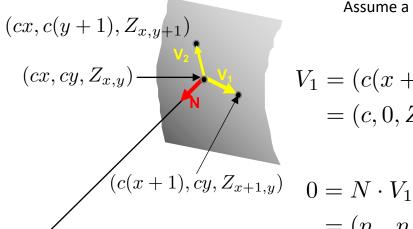
Perspective



Scaled orthographic

Depth Map from Normal Map

 We now have a surface normal, but how do we get depth?



(x, y + 1)

Assume a smooth surface

$$V_1 = (c(x+1), cy, Z_{x+1,y}) - (cx, cy, Z_{x,y})$$

= $(c, 0, Z_{x+1,y} - Z_{x,y})$

$$0 = N \cdot V_1$$

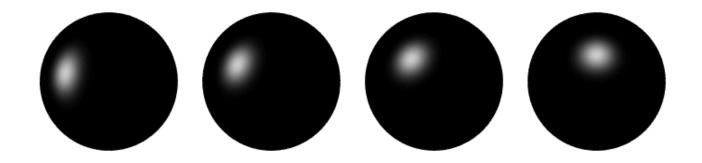
$$= (n_x, n_y, n_z) \cdot (c, 0, Z_{x+1,y} - Z_{x,y})$$

$$= cn_x + n_z (Z_{x+1,y} - Z_{x,y})$$

Get a similar equation for V₂

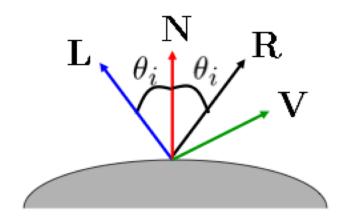
- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

• Trick: Place a mirror ball in the scene.

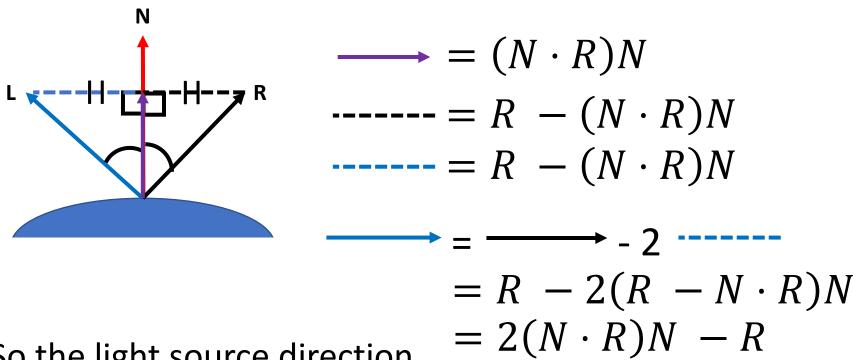


• The location of the highlight is determined by the light source direction.

• For a perfect mirror, the light is reflected across N:



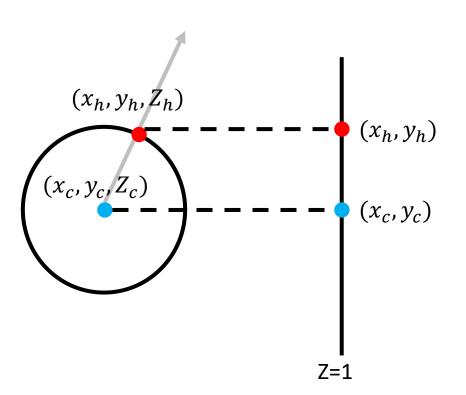
$$I_e = \begin{cases} I_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$



So the light source direction is given by:

$$L = 2(N \cdot R)N - R$$

- Assume orthographic projection
- Viewing direction R = [0,0,-1]
- Normal?



 Z_h and Z_c are unknown, but:

$$(x_h - x_c)^2 + (y_h - y_c)^2 + (Z_h - Z_c)^2 = r^2$$

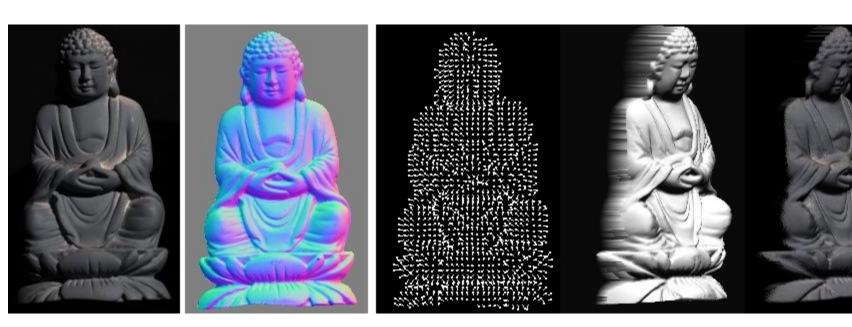
 $(Z_h - Z_c)$ can be computed

$$(x_h - x_c, y_h - y_c, Z_h - Z_c)$$
 is the normal

$$L = 2(N \cdot R)N - R$$

Photometric Stereo

What results can you get?



Input (1 of 12)

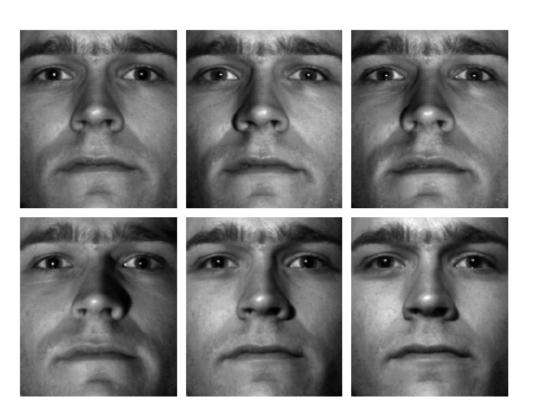
Normals (RGB colormap)

Normals (vectors)

Shaded 3D rendering

Textured 3D rendering

Results

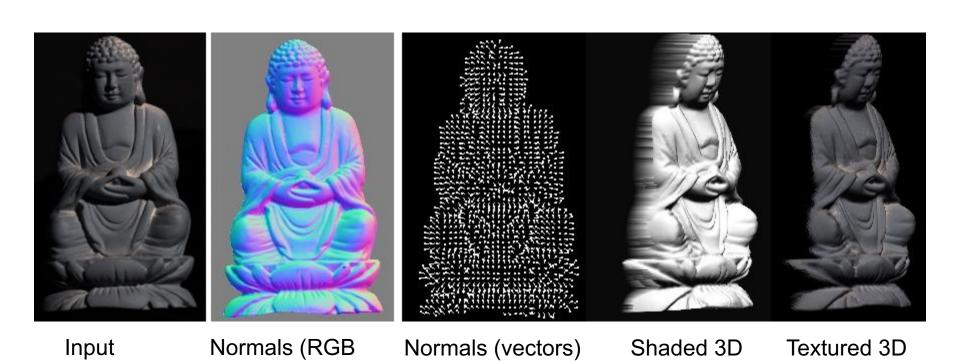


from Athos Georghiades

Results

(1 of 12)

colormap)



rendering

rendering

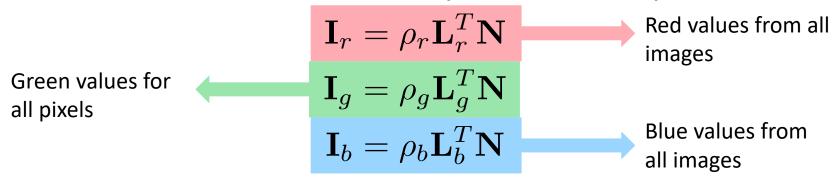
Photometric stereo

How many lights / images do you need?

 Are there any constraints on where to put the lights?

Color Images

Now we have 3 sets of equations for a pixel:



- Simple approach: solve for N using grayscale or a single channel
- Then fix N and solve for each channel's ρ

Color Images

• Then fix N and solve for each channel's ho :

$$Q(\rho) = \sum_{i} (I_i - \rho \mathbf{L}_i^T \mathbf{N})^2$$

- Want to minimize $Q(\rho)$
 - Take derivative and set to 0

$$\frac{dQ(\rho)}{d\rho} = -2\sum_{i} (I_i - \rho \mathbf{L}_i^T \mathbf{N}) \mathbf{L}_i^T \mathbf{N}$$

$$\frac{dQ(\rho)}{d\rho} = 0 \Rightarrow \rho = \frac{\sum_{i} I_{i} \mathbf{L}_{i}^{T} \mathbf{N}}{\sum_{i} (\mathbf{L}_{i}^{T} \mathbf{N})^{2}}$$

Question

How many color images do you need?

 How many color images do you need if the object was grayscale?

Questions?

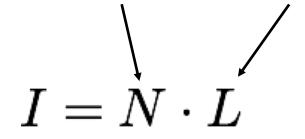
• What we've seen so far: [Woodham 1980]

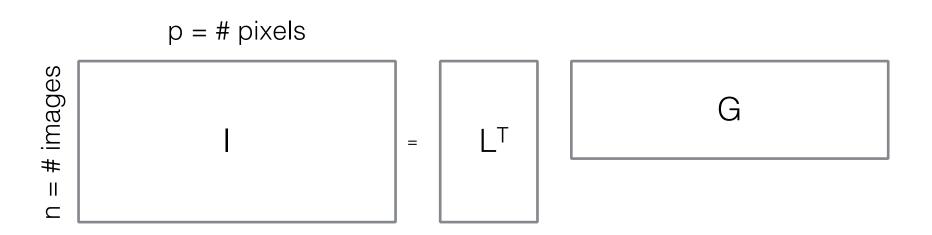
Next up: Unknown light directions [Hayakawa 1994]

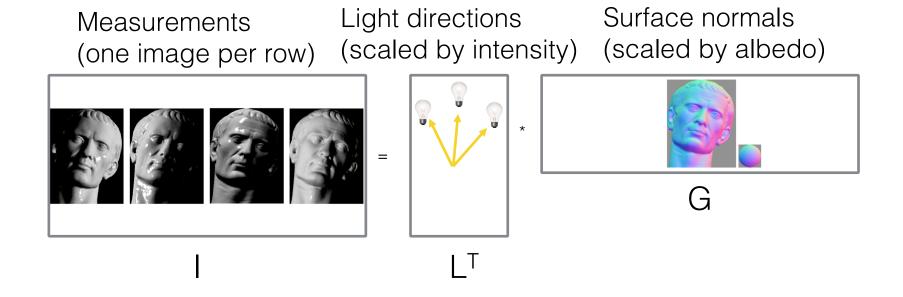
Surface normals Light directions $I = kN \cdot \ell L$ Diffuse albedo Light intensity

Surface normals, scaled by albedo

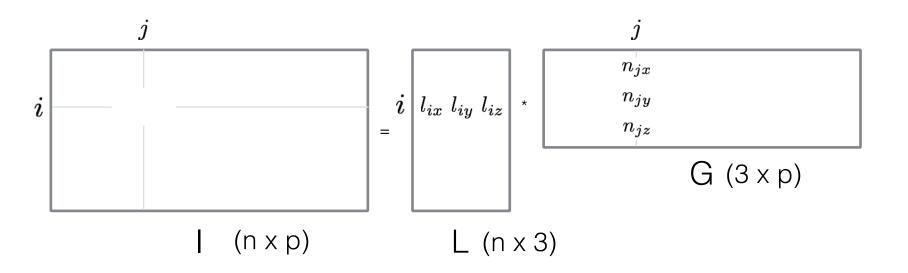
Light directions, scaled by intensity







Both L and G are now unknown! This is a matrix factorization problem.



There's hope: We know that I is rank 3

Use the SVD to decompose I:

SVD gives the best rank-3 approximation of a matrix.

Use the SVD to decompose I:

SVD gives the best rank-3 approximation of a matrix. What do we do with Σ ?

Use the SVD to decompose I:

Can we just do that?

Use the SVD to decompose I:

Can we just do that? ...almost.

The decomposition is unique up to an invertible 3x3 A.

Use the SVD to decompose I:

Can we just do that?

...almost. $L = U\sqrt{\Sigma}A$, $G = A^{-1}\sqrt{\Sigma}V$

The decomposition is unique up to an invertible 3x3 A.

Use the SVD to decompose I:

$$\mathsf{I}$$

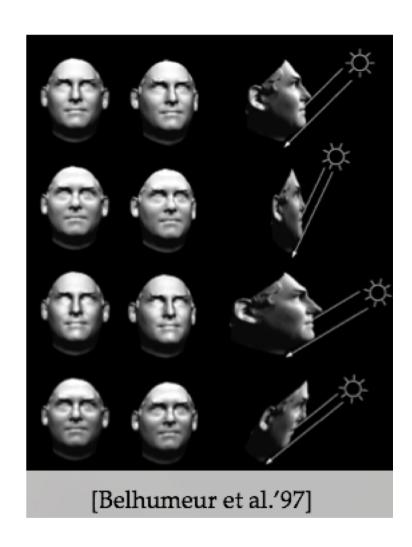
$$L = U\sqrt{\Sigma}A$$
, $G = A^{-1}\sqrt{\Sigma}V$

You can find A if you know

- 6 points with the same reflectance, or
- 6 lights with the same intensity.

Unknown Lighting: Ambiguities

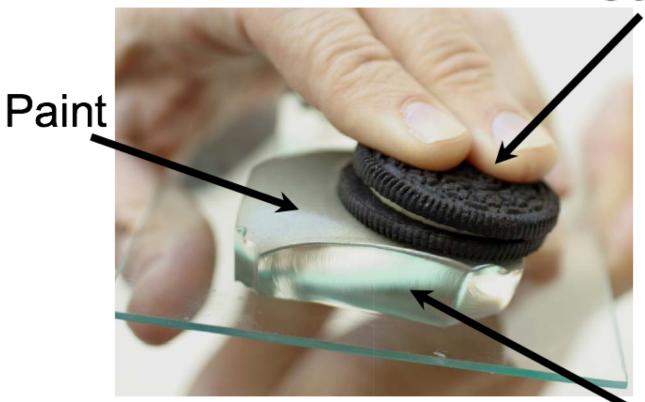
- Multiple combinations of lighting and geometry can produce the same sets of images.
- Add assumptions or prior knowledge about geometry or lighting, etc. to limit the ambiguity.



Photometric stereo

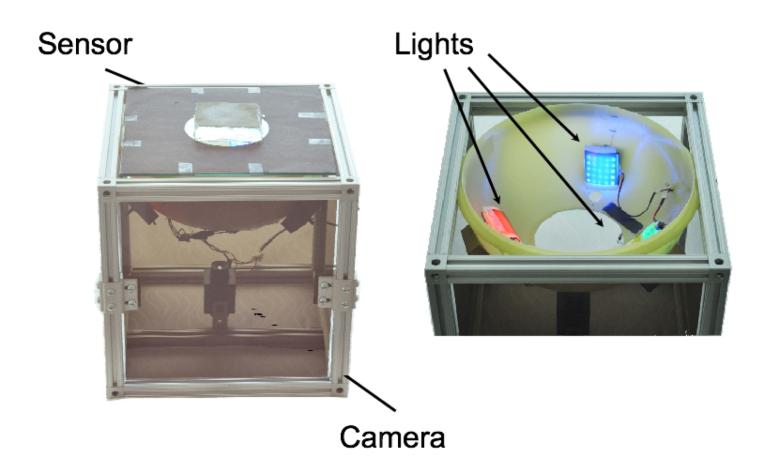
- How do we deal with non-lambertian surfaces?
- How do we make sure we know the lighting directions?
- How can we effectively use color?

Cookie



Clear Elastomer

Lights, camera, action



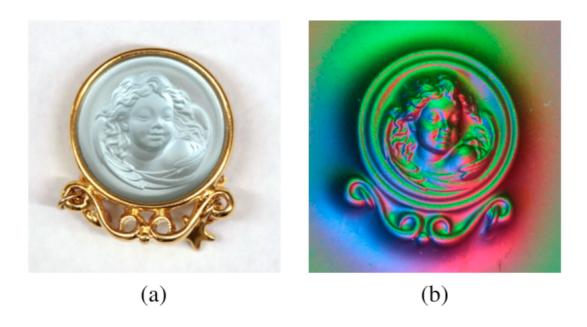


Figure 2. (a) This decorative pin consists of a glass bas-relief portrait mounted in a shiny gold setting. (b) The RGB image provided by the retrographic sensor. The pin is pressed into the elastomer skin, and colored lights illuminate it from three directions.

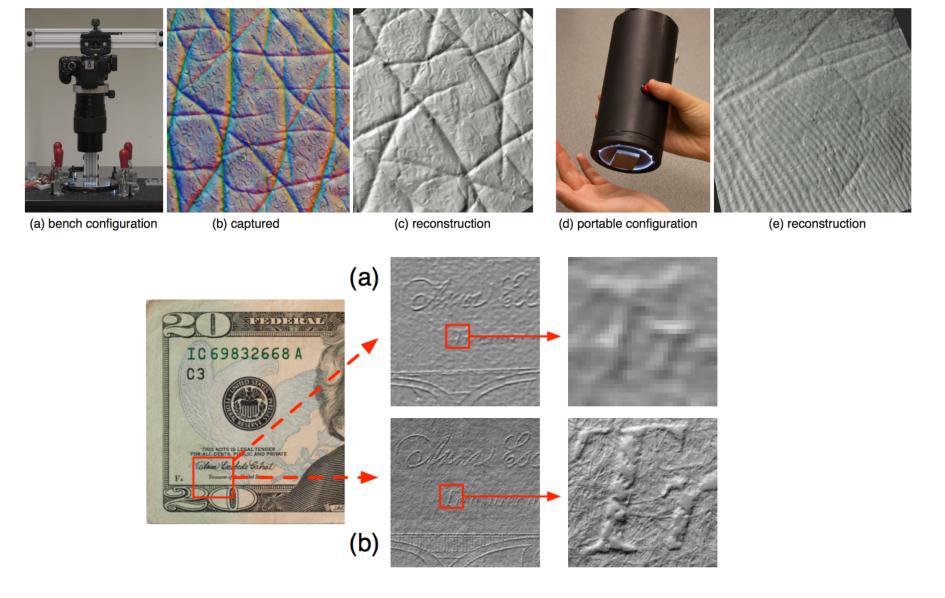


Figure 7: Comparison with the high-resolution result from the original retrographic sensor. (a) Rendering of the high-resolution \$20 bill example from the original retrographic sensor with a close-up view. (b) Rendering of the captured geometry using our method.

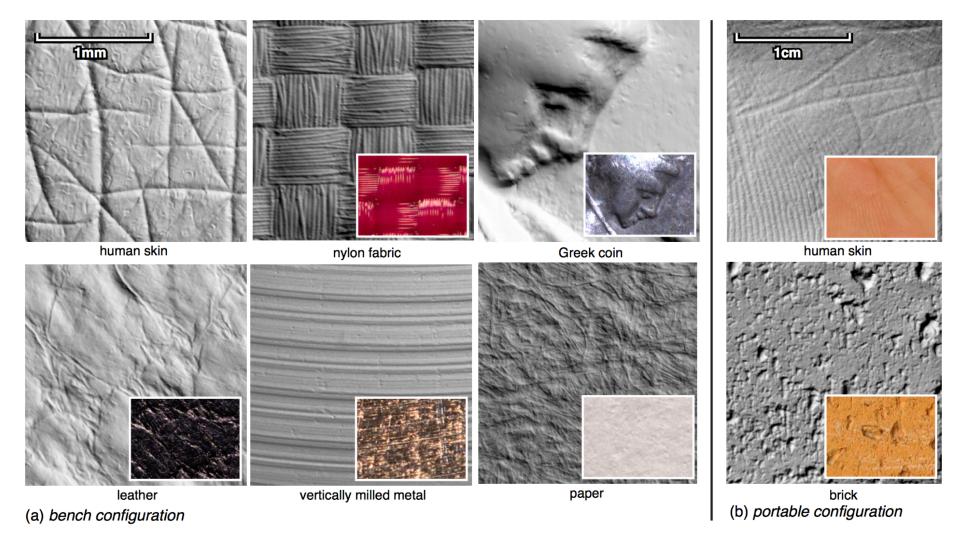


Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset: macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.

Summary of reconstruction

- Given multiple cameras, correspondence, cameras
 - Triangulation
 - Set up linear equations of the form Ax = 0
 - Correspondence must satisfy epipolar constraint
- Stereo is easy for rectified stereo cameras
 - Only disparities along a row
 - Disparity direct measure of depth
- Photometric stereo: use different light sources
 - Gives you normals and albedo