CS4670: Computer Vision Kavita Bala

Lecture 9: Feature Descriptors



Announcements

- PA 1 grading (almost done)
 - Finalized grades next week

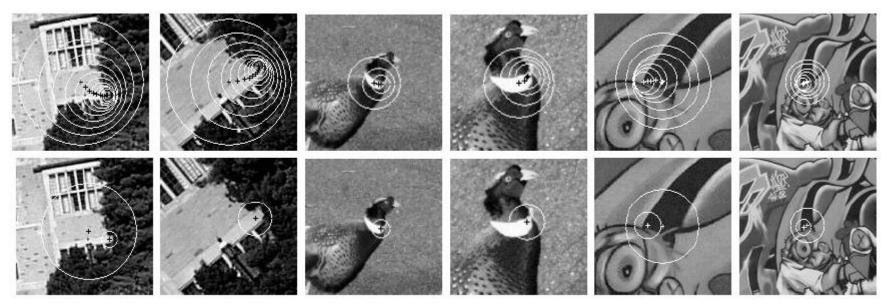
Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Harris-Laplace [Mikolajczyk '01]

- 1. Initialization: Multiscale Harris corner detection
- 2. Scale selection based on Laplacian

Harris points

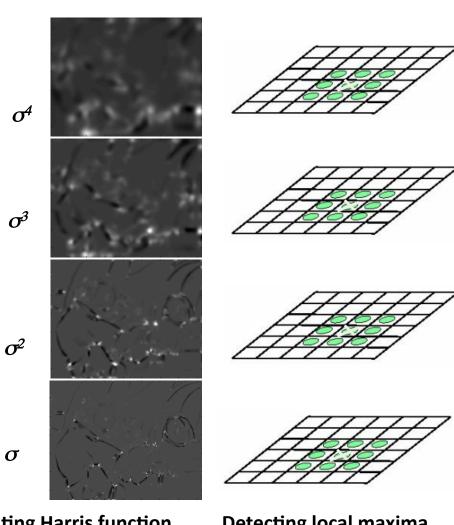


Harris-Laplace points

K. Grauman, B. Leibe

Harris-Laplace [Mikolajczyk '01]

1. Initialization: Multiscale Harris detection



Computing Harris function

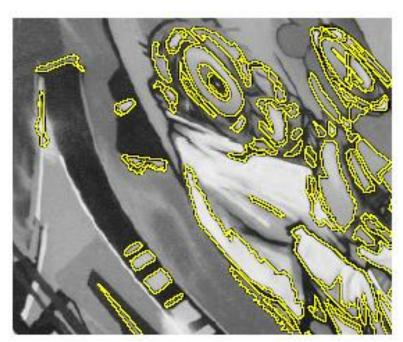
Detecting local maxima

Maximally Stable Extremal Regions

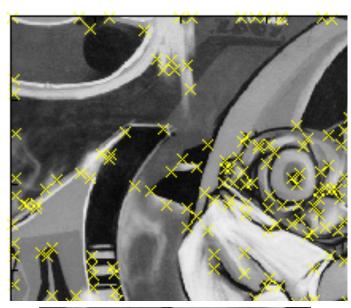
J.Matas et.al. "Distinguished Regions for Wide-baseline Stereo". BMVC 2002.

- Maximally Stable Extremal Regions
 - Threshold image intensities: I > thresh
 for several increasing values of thresh
 - Extract connected components ("Extremal Regions")
 - Find a threshold when region is "Maximally Stable", i.e. *local minimum* of the relative growth
 - Approximate each region with an *ellipse*

Example Results: MSER

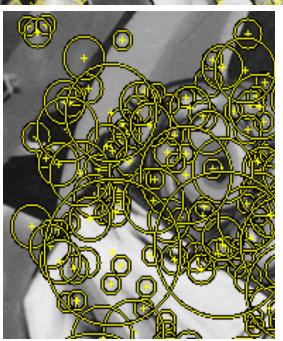


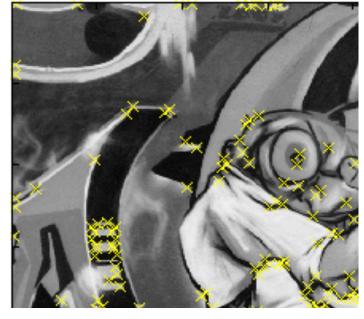
Comparison



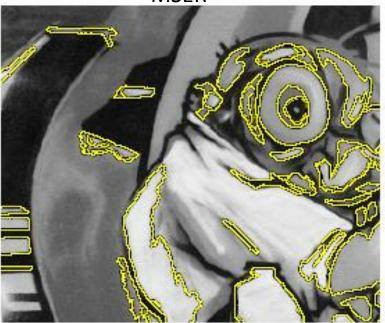
Harris

LoG





MSER

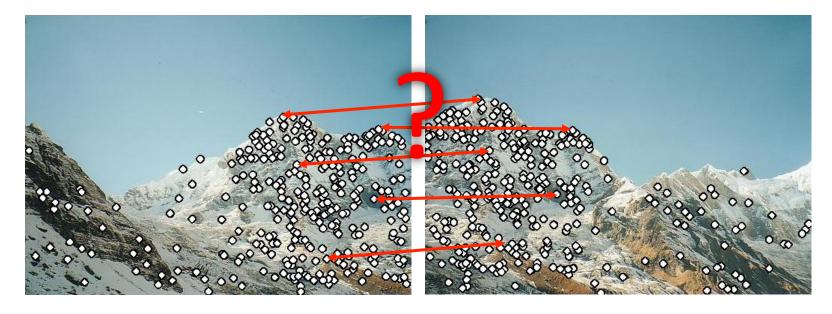


Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Feature descriptors

We know how to detect good points Next question: How to match them?



Answer: Come up with a *descriptor* for each point, find similar descriptors between the two images

Image representations

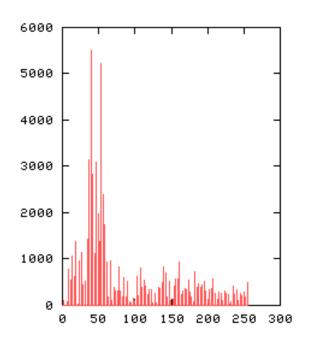
- Templates
 - Intensity, gradients, etc.

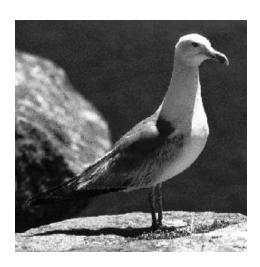
- Histograms
 - Color, texture, SIFT descriptors, etc.

Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/ gradient information
 - Capture texture information

Image Representations: Histograms

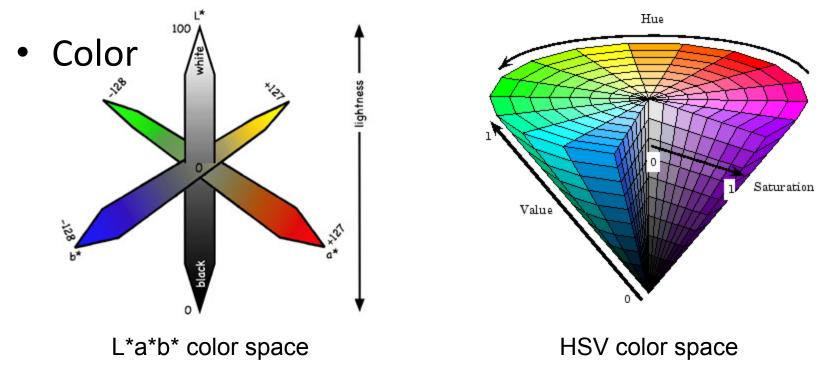




Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

What kind of things do we compute histograms of?

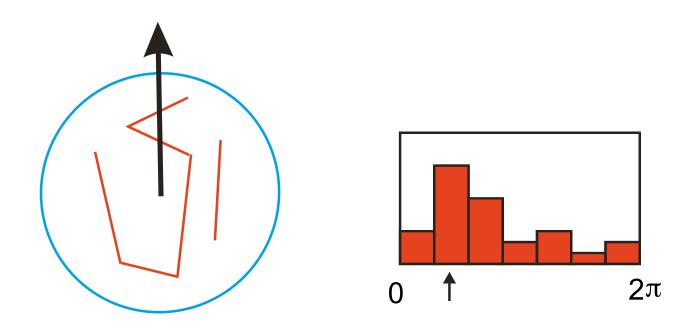


- Texture (filter banks or HOG over regions)
 - HOG: Histogram of Oriented Gradients

Orientation Normalization

[Lowe, SIFT, 1999]

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation



Rotation invariance for feature descriptors

- Find dominant orientation of the image patch
 - This is given by \mathbf{x}_{max} , the eigenvector of \mathbf{M} corresponding to λ_{max} (the larger eigenvalue)
 - Rotate the patch according to this angle

Figure by Matthew Brown

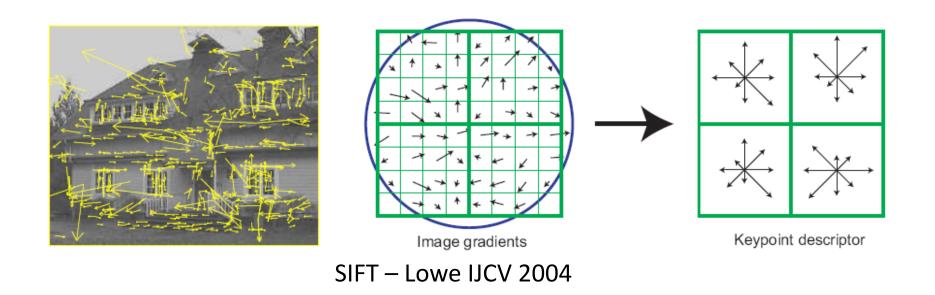
Multiscale Oriented PatcheS descriptor

Take 40x40 square window around detected feature

- Scale to 1/5 size (using prefiltering)
- Rotate to horizontal
- Sample 8x8 square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window



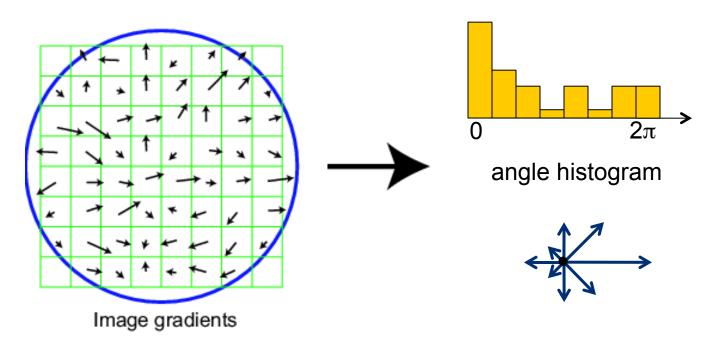
What kind of things do we compute histograms of?



Scale Invariant Feature Transform

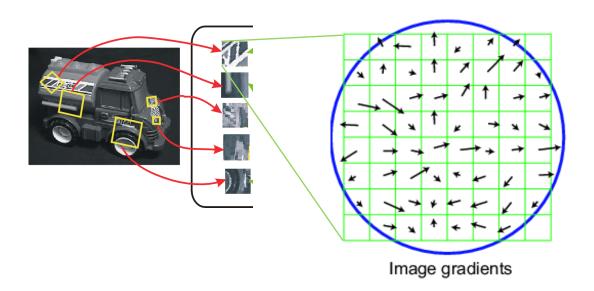
Basic idea:

- Take 16x16 square window around detected feature
- Compute gradient orientation for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations



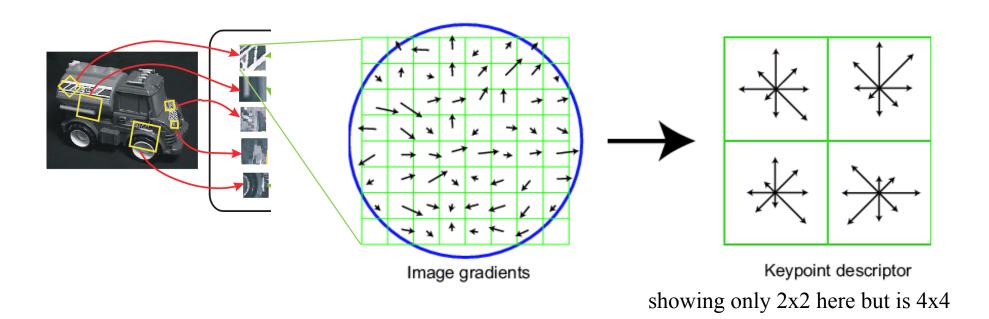
SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian of variance 1.5 times the window (for smooth falloff)



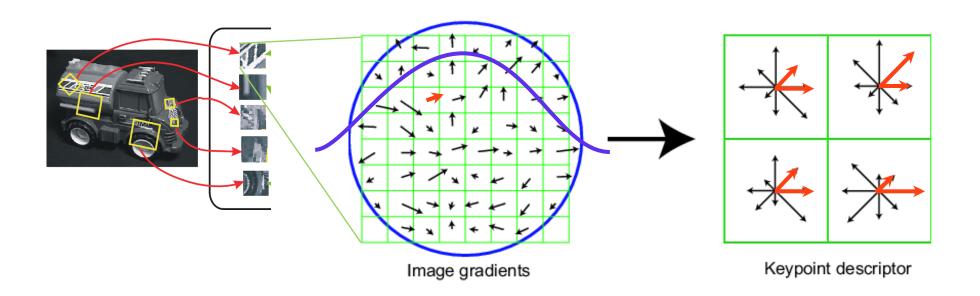
SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much



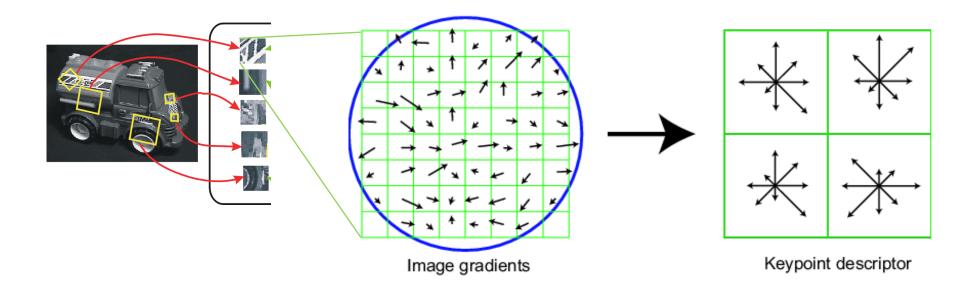
Ensure smoothness

- Gaussian weight
- Trilinear interpolation
 - a given gradient contributes to 8 bins:4 in space times 2 in orientation



Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize

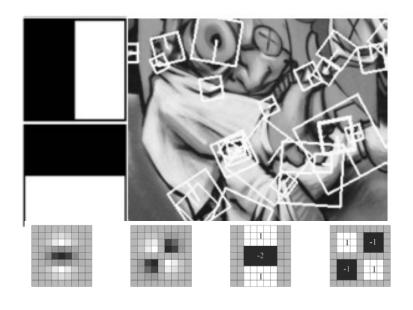


Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available:
 http://people.csail.mit.edu/albert/ladypack/wiki/index.php/
 Known implementations of SIFT

Local Descriptors: SURF



Fast approximation of SIFT idea

Efficient computation (Haar wavelets)
 ⇒ 6 times faster than SIFT
 Equivalent quality for object identification

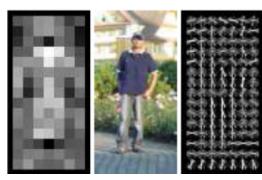
GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf

Other descriptors

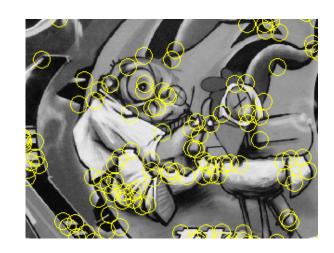
- HOG: Histogram of Gradients (HOG)
 - Dalal/Triggs
 - Sliding window, pedestrian detection

- FREAK: Fast Retina Keypoint
 - Perceptually motivated



Summary

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG



- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT and variants are typically good for stitching and recognition
 - But, need not stick to one

