# CS4670: Computer Vision Kavita Bala

#### Lecture 7: Harris Corner Detection



#### **Announcements**

HW 1 will be out soon

- Sign up for demo slots for PA 1
  - Remember that both partners have to be there
  - We will ask you to explain your partners code

### **Filters**

• Linearly separable filters

#### Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
  - Images become more smooth
- Convolution with self is another Gaussian
  - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
  - Convolving two times with Gaussian kernel of width  $\sigma$  is same as convolving once with kernel of width  $\sigma$ V2
- Separable kernel
  - Factors into product of two 1D Gaussians

### Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

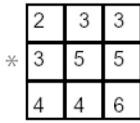
The 2D Gaussian can be expressed as the product of two functions, one a function of *x* and the other a function of *y* 

In this case, the two functions are the (identical) 1D Gaussian

### Separability example

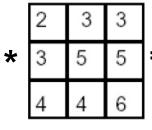
2D convolution (center location only)

| 1 | 2 | 1 |  |
|---|---|---|--|
| 2 | 4 | 2 |  |
| 1 | 2 | 1 |  |



The filter factors into a product of 1D filters:

Perform convolution along rows:



|   | 11 |  |
|---|----|--|
| = | 18 |  |
|   | 18 |  |

Followed by convolution along the remaining column:

# CS4670: Computer Vision Kavita Bala

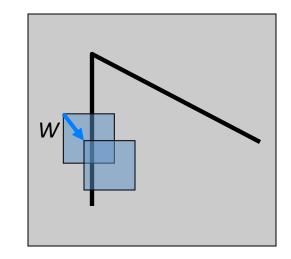
#### Lecture 7: Harris Corner Detection



#### Feature detection: the math

#### Consider shifting the window W by (u,v)

define an SSD "error" E(u,v):



$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in W} [I(x,y) + [I_{x} I_{y}] \begin{bmatrix} u \\ v \end{bmatrix} - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in W} [[I_{x} I_{y}] \begin{bmatrix} u \\ v \end{bmatrix}]^{2}$$

### Corner Detection: Mathematics

The quadratic approximation simplifies to

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives (aka structure tensor):

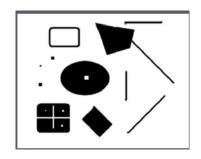
$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{I_x I_x}^{I_x I_x} & \sum_{I_x I_y}^{I_x I_y} \\ \sum_{I_x I_y}^{I_x I_y} & \sum_{I_y I_y}^{I_y I_y} \end{bmatrix} = \sum_{I_x I_y}^{I_x I_y} [I_x I_y] = \sum_{I_x I_y}^{I_x I_y} \nabla_{I_x I_y}^{I_x I_y}$$

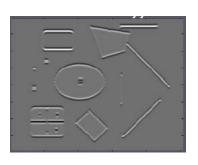
#### **Corners** as distinctive interest points

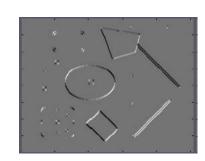
$$M = \sum \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point)









Notation:

$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$

$$I_y \Leftrightarrow \frac{\partial I}{\partial y}$$

$$I_y \Leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$$

### Weighting the derivatives

$$H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

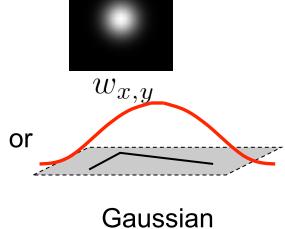
 Instead, we'll weight each derivative value based on its distance from the center pixel

$$H = \sum_{(x,y)\in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Window function w(x,y) =



1 in window, 0 outside



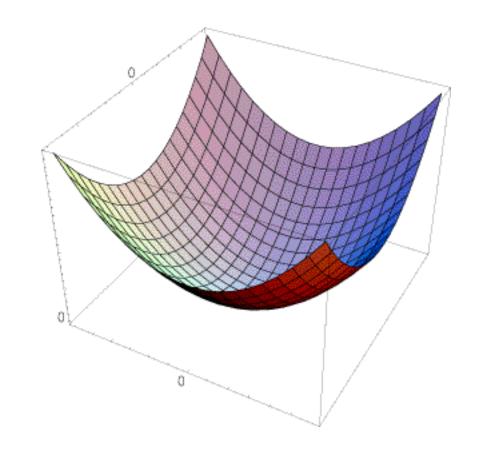
Caabolan

### Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

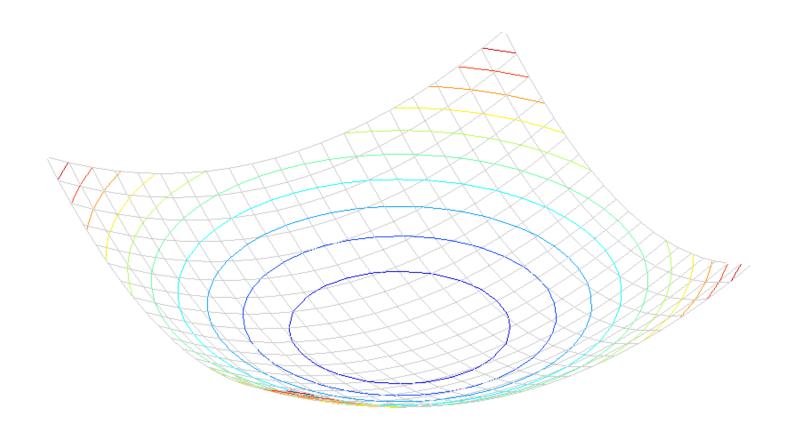
$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} \begin{vmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{vmatrix}$$



### Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v):  $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$ This is the equation of an ellipse.



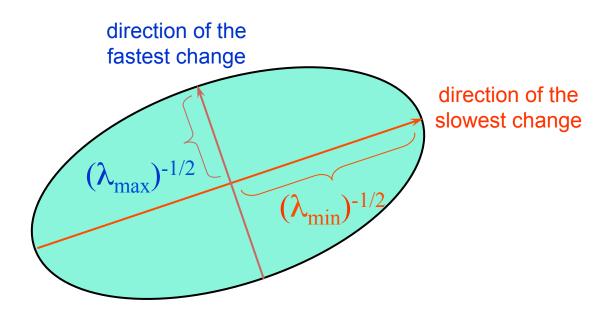
### Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v):  $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$ 

This is the equation of an ellipse.

Diagonalization of M: 
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by *R* 



### Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar  $\lambda$  is the **eigenvalue** corresponding to  $\mathbf{x}$ 

The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

$$\det \begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} = 0$$

### Quick eigenvalue/eigenvector review

The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[ (h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Once you know  $\lambda$ , you find the eigenvectors by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

Symmetric, square matrix: eigenvectors are mutually orthogonal

#### Corner detection: the math

$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M \quad x_{\text{max}} = \lambda_{\text{max}} x_{\text{max}}$$

$$M \quad x_{\text{min}} = \lambda_{\text{min}} x_{\text{min}}$$

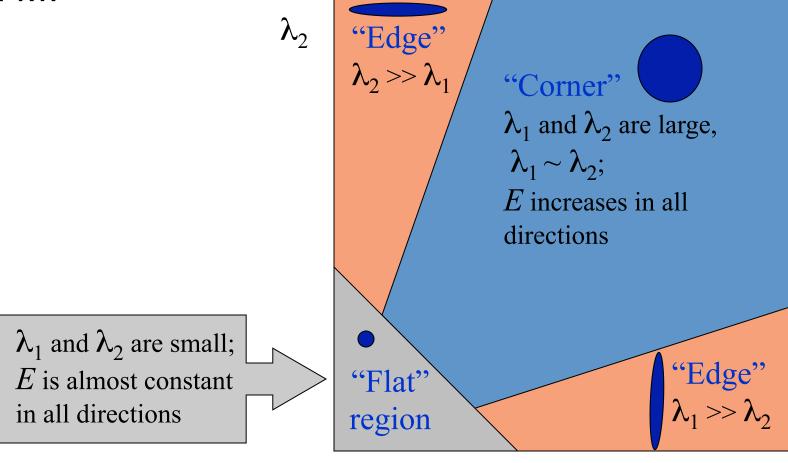
#### Eigenvalues and eigenvectors of M

- Define shift directions with smallest and largest change in error
- x<sub>max</sub> = direction of largest increase in E
- $\lambda_{max}$  = amount of increase in direction  $x_{max}$
- $x_{min}$  = direction of smallest increase in E
- $\lambda_{min}$  = amount of increase in direction  $x_{min}$

### Interpreting the eigenvalues

Classification of image points using eigenvalues

of *M*:



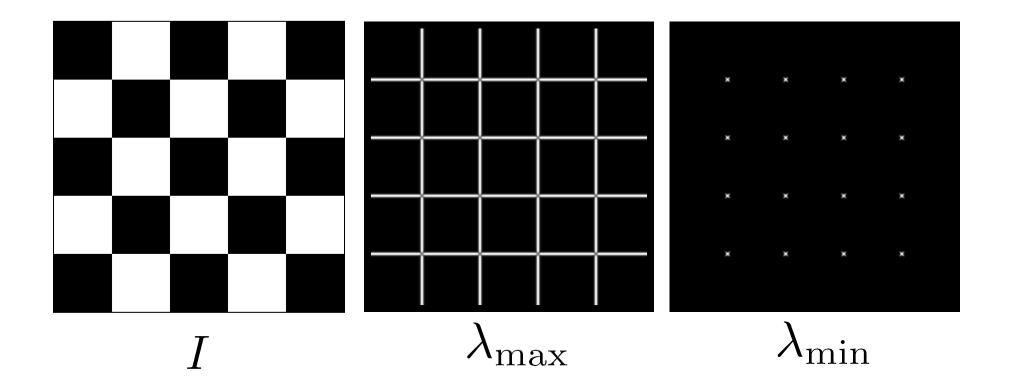
#### Corner detection: the math

How do  $\lambda_{max}$ ,  $x_{max}$ ,  $\lambda_{min}$ , and  $x_{min}$  affect feature detection?

What's our feature scoring function?

#### Corner detection: the math

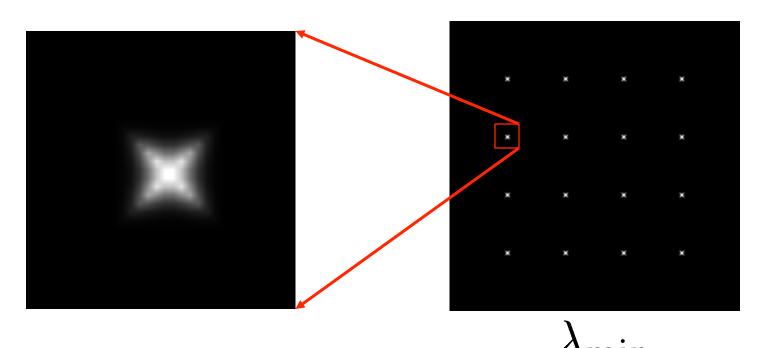
- What's our feature scoring function?
   Want E(u,v) to be large for small shifts in all directions
  - the minimum of E(u,v) should be large, over all unit vectors  $[u \ v]$
  - this minimum is given by the smaller eigenvalue ( $\lambda_{\min}$ ) of M



#### Corner detection: take 1

#### Here's what you do

- Compute the gradient at each point in the image
- Create the *M* matrix from the entries in the gradient
- Compute the eigenvalues
- Find points with large response ( $\lambda_{min}$  > threshold)
- Choose those points where  $\lambda_{min}$  is a local maximum



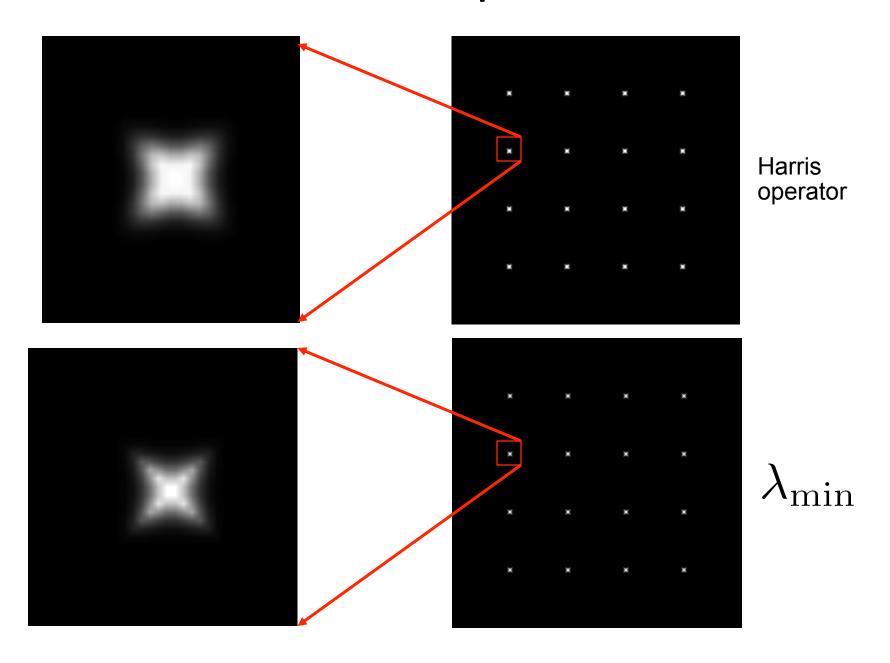
### The Harris operator

 $\lambda_{min}$  is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2}$$
$$f = \frac{\det(M)}{trace(M)^2}$$

- The trace is the sum of the diagonals, i.e.,  $trace(M) = h_{11} + h_{22}$
- Very similar to  $\lambda_{min}$  but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

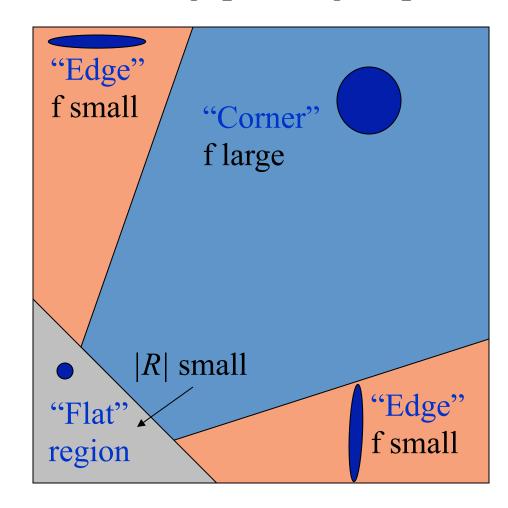
### The Harris operator



### Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 $\alpha$ : constant (0.04 to 0.1)

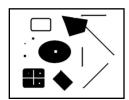


### Harris corner detector

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*f* > threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector." Proceedings</u> of the 4th Alvey Vision Conference: pages 147—151, 1988.

### Harris Detector [Harris88]



$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives (optionally, blur first)

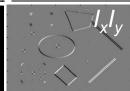




2. Square of derivatives







$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

3. Cornerness function – both eigenvalues are strong Compute f

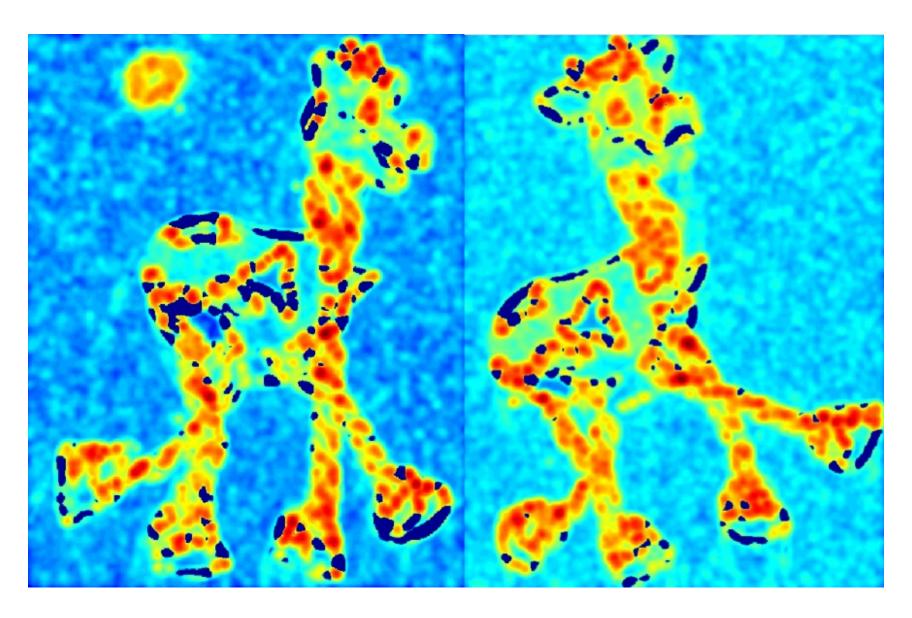


4. Non-maxima suppression

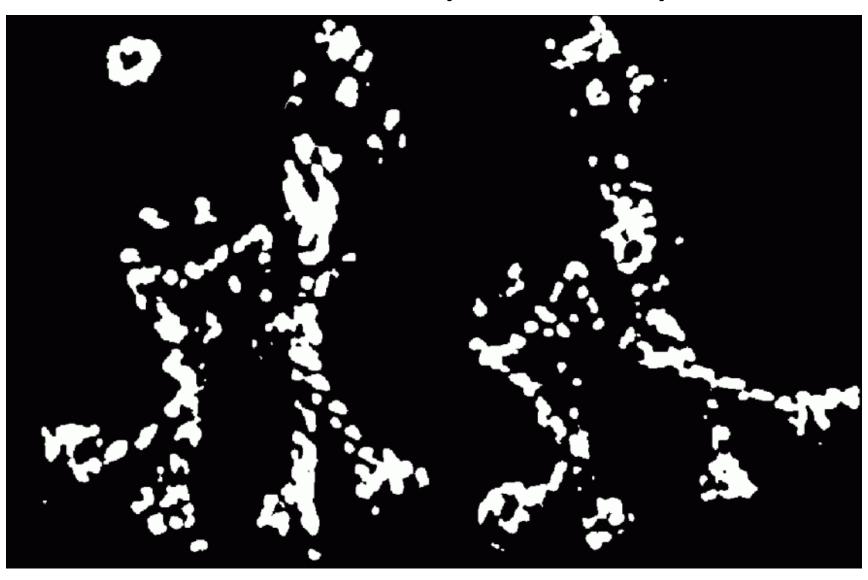
# Harris detector example



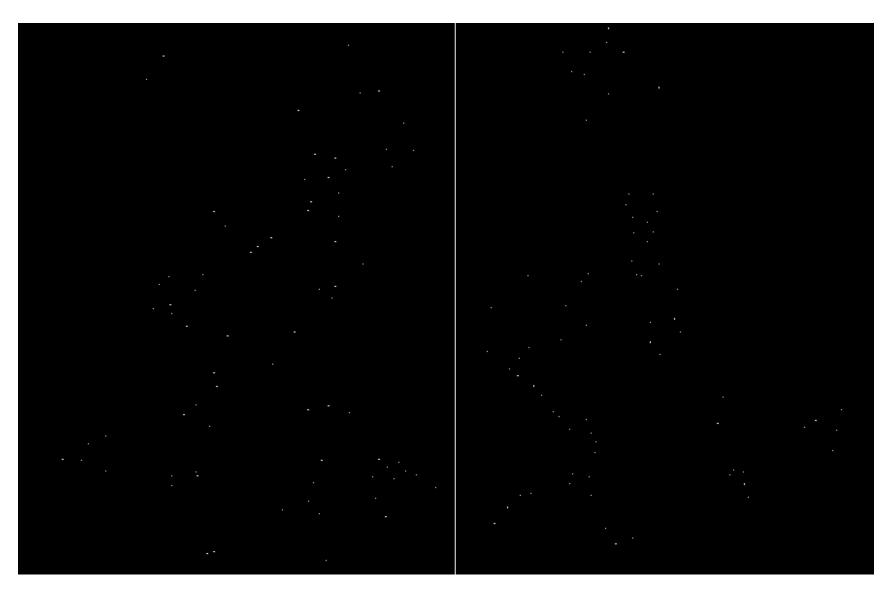
# f value (red high, blue low)



# Threshold (f > value)



### Find local maxima of f



## Harris features (in red)



### Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
  - Invariance: image is transformed and corner locations do not change
  - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations



### Image transformations

Geometric





**Scale** 



PhotometricIntensity change





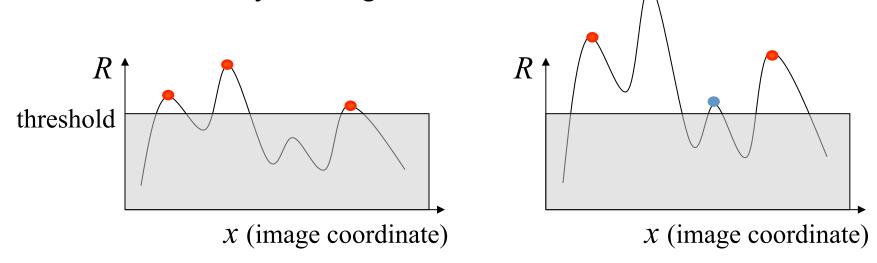


### Affine intensity change



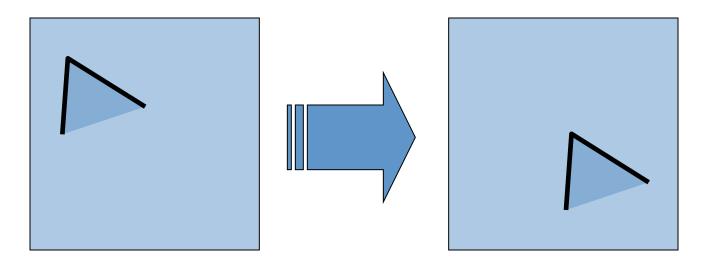
Only derivatives => invariance to intensity shift  $I \rightarrow I + b$ 

Intensity scaling:  $I \rightarrow a I$ 



Partially invariant to affine intensity change

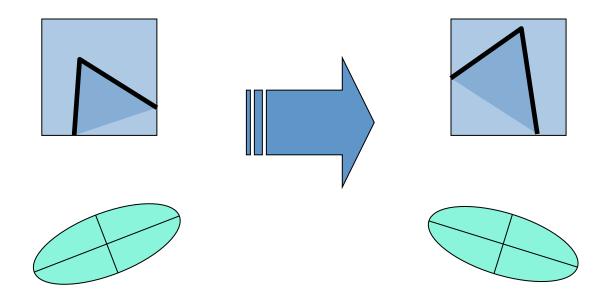
### Harris: image translation



Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

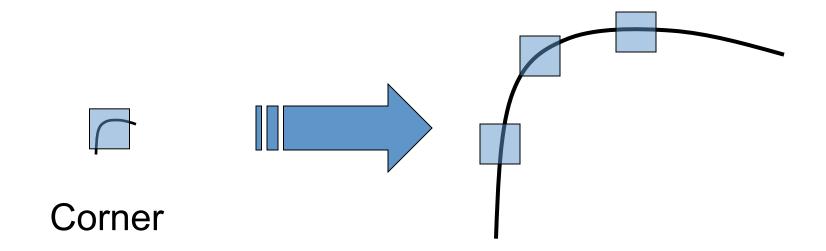
### Harris: image rotation



Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

## Scaling

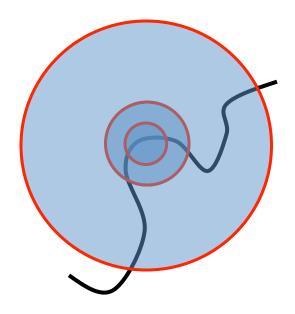


All points will be classified as edges

Corner location is not covariant to scaling!

#### Scale invariant detection

Suppose you're looking for corners



Key idea: find scale that gives local maximum of f

- in both position and scale
- One definition of f: the Harris operator

### Questions?