CS4670/5670: Computer Vision Kavita Bala

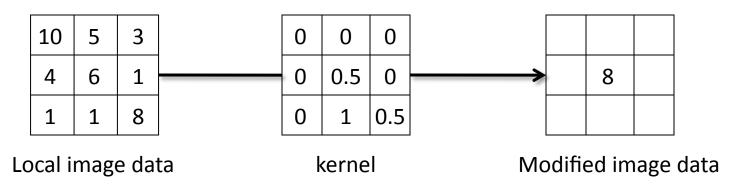
Lecture 2: Filtering

Announcements

- PA 1 will be out early next week (Monday)
 - due in 2 weeks
 - to be done in groups of two please form your groups ASAP
- We will grade in demo sessions

Linear filtering

- One simple version: linear filtering
 - Replace each pixel by a linear combination (a weighted sum) of its neighbors
 - Simple, but powerful
 - Cross-correlation, convolution
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")



Filter Properties

- Linearity
 - Weighted sum of original pixel values
 - Use same set of weights at each point
 - -S[f+g] = S[f] + S[g]
 - -S[p f + q g] = p S[f] + q S[g]
- Shift-invariance
 - If $f[m,n] \stackrel{s}{\rightarrow} g[m,n]$, then $f[m-p,n-q] \stackrel{s}{\rightarrow} g[m-p,n-q]$
 - The operator behaves the same everywhere

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

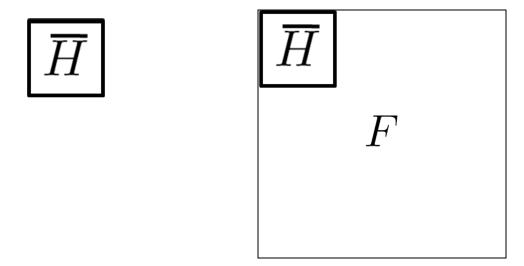
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

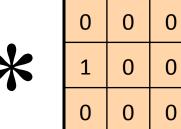
Convolution



Pseudo-code

```
function convolve(sequence a, sequence b, int r, int i) s=0 for j=-r to r s=s+a[j]b[i-j] return s
```

Linear filters: examples



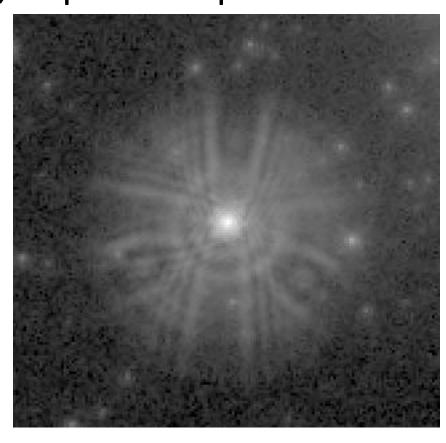


Shifted left By 1 pixel

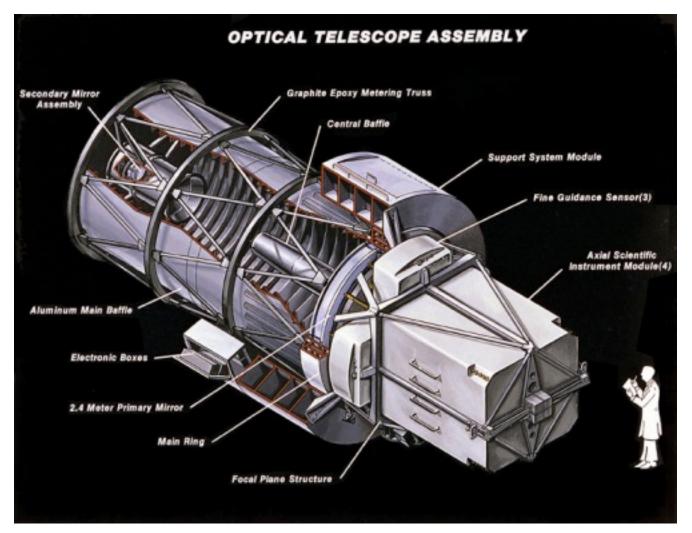
Convolution

• Point spread function, impulse response

function

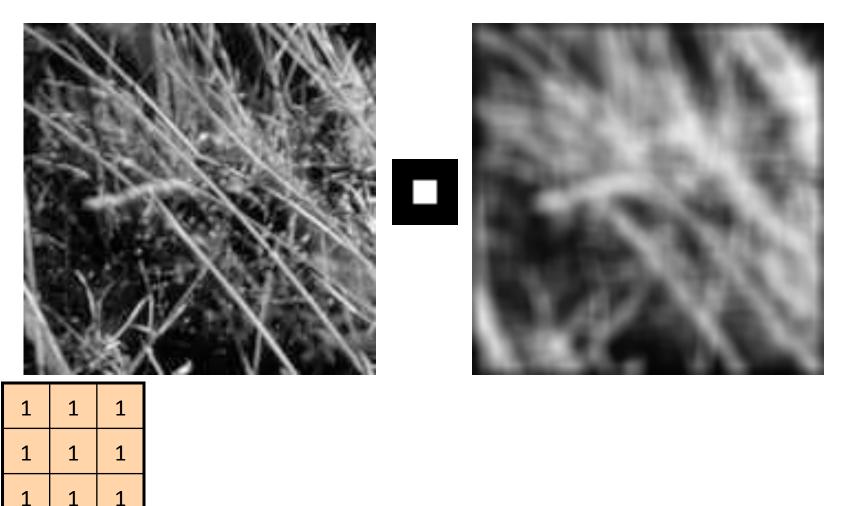


PSF of Hubble Telescope



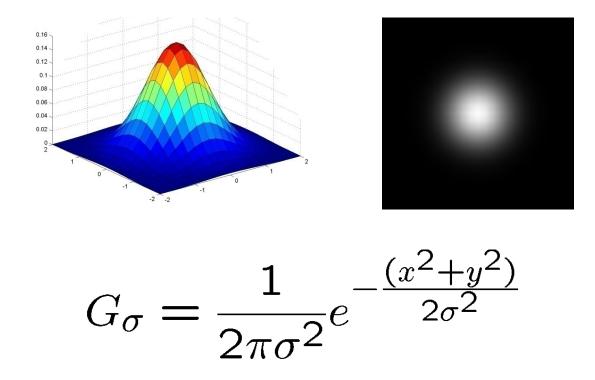
http://aetherforce.com/wp-content/uploads/2013/10/8707342.jpg

Smoothing with box filter



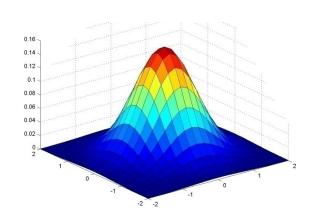
Source: D. Forsyth

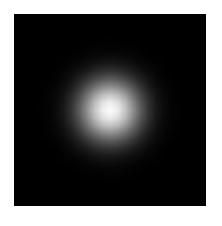
Gaussian Kernel



Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

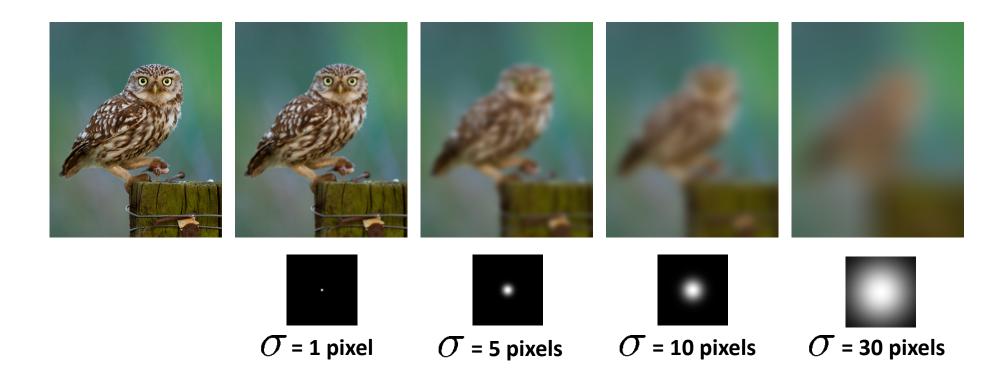




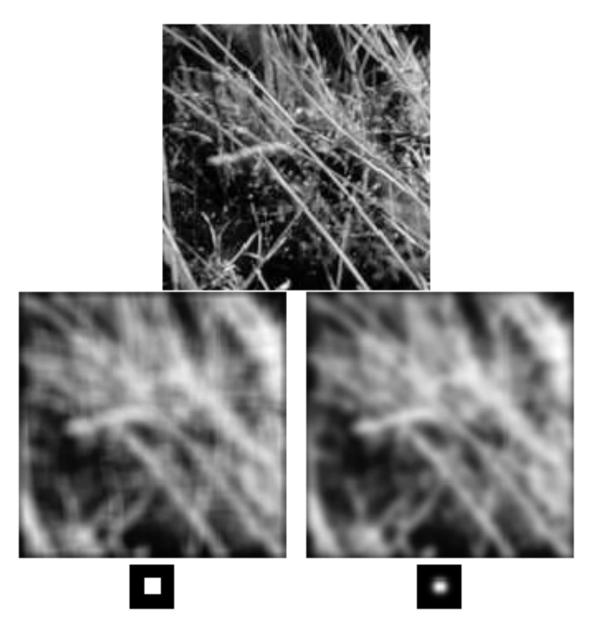
0.003 0.013				
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

Gaussian filters

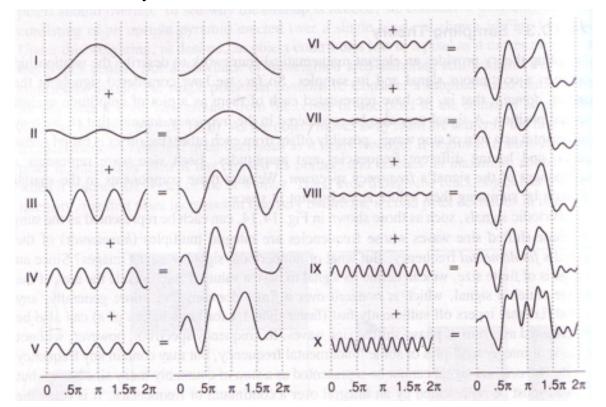


Mean vs. Gaussian filtering

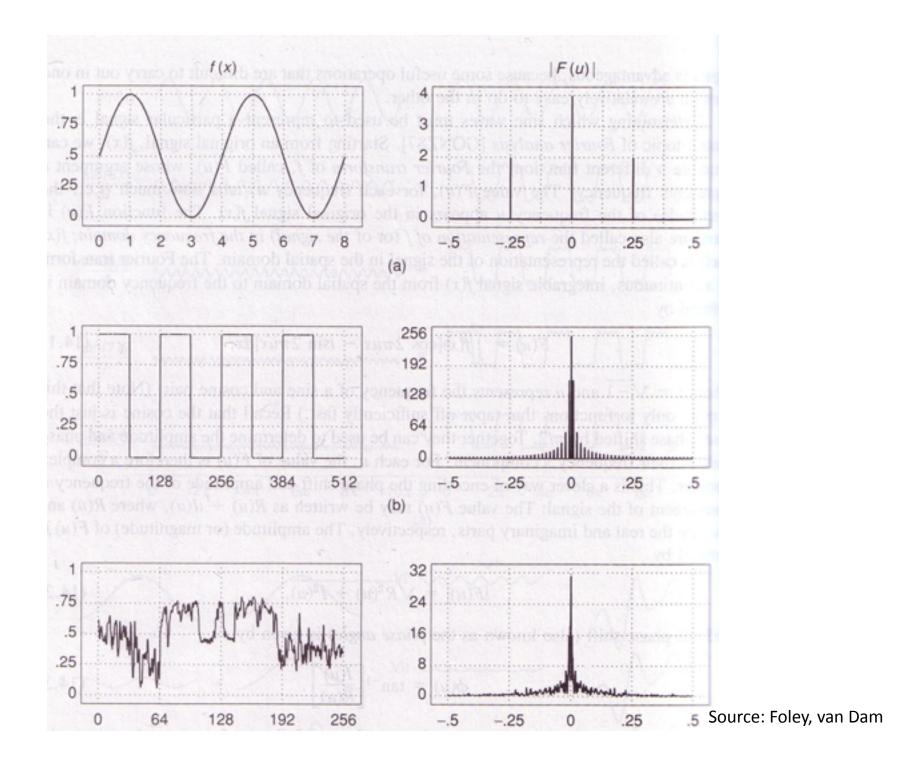


Detour: Fourier Analysis

- Every signal has some frequency
- Fourier analysis finds frequencies of a signal
 - Sum of sine/cosine waves



Source: Foley, van Dam



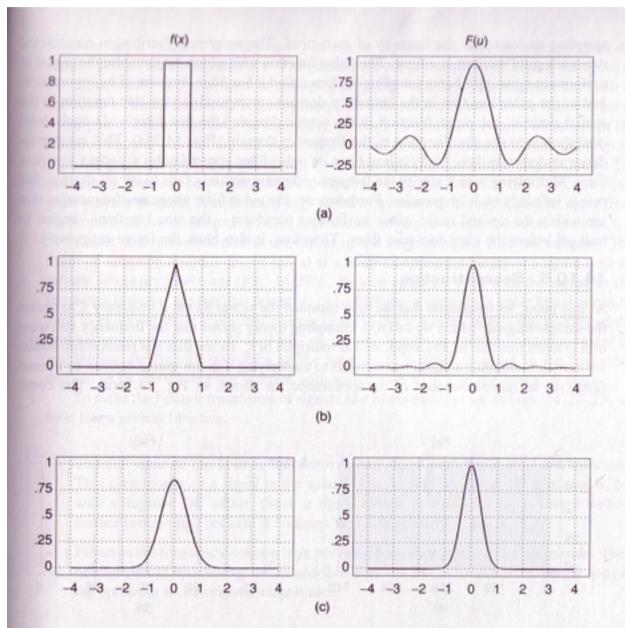


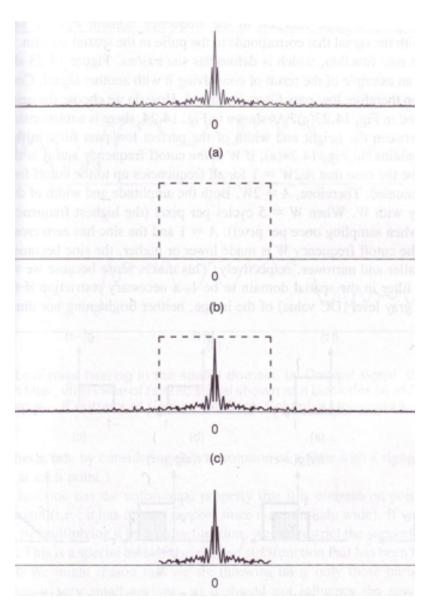
Fig. 14.25 Filters in spatial and frequency domains. (a) Pulse—sinc. (b) Triangle—sinc². (c) Gaussian—Gaussian. (Courtesy of George Wolberg, Columbia University.)

Source: Foley, van Dam

Convolution is special

- Convolution in image space
 - Multiplication in Fourier space
- Box filter -> sinc in Fourier space
- Gaussian filter -> Gaussian in Fourier space

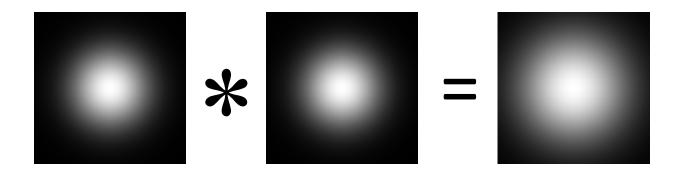
Low pass filtering



Source: Foley, van Dam

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian



– Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

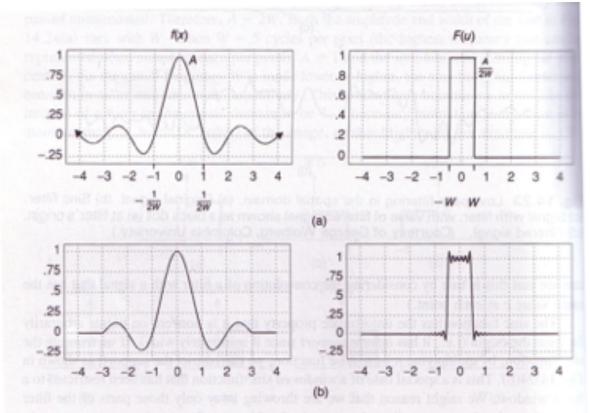


Fig. 14.24 (a) Sinc in spatial domain corresponds to pulse in frequency domain.

(b) Truncated sinc in spatial domain corresponds to ringing pulse in frequency domain.

(Courtesy of George Wolberg, Columbia University.)

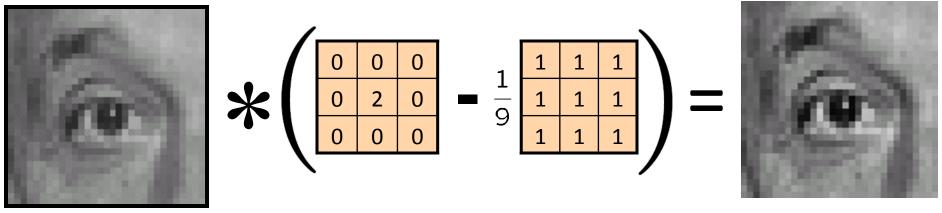
Sharpening

What does blurring take away?

Let's add it back:

Source: S. Lazebnik

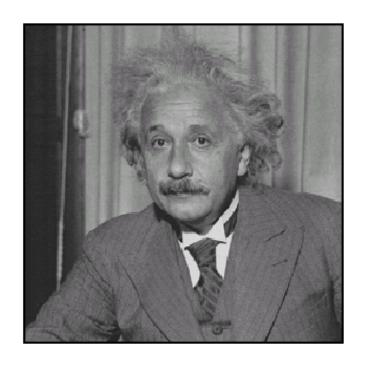
Linear filters: examples

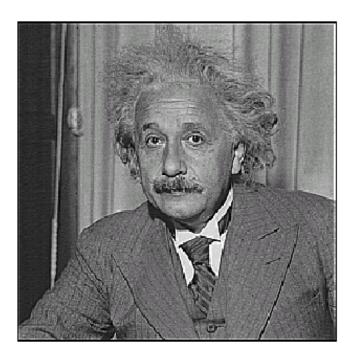


Original

Sharpening filter (accentuates edges)

Sharpening





after

Sharpen filter

$$F + \alpha \left(F - F * H\right) = (1 + \alpha) F - \alpha \left(F * H\right) = F * ([1 + \alpha]e - \alpha H)$$

$$\downarrow \text{blurred image image}$$

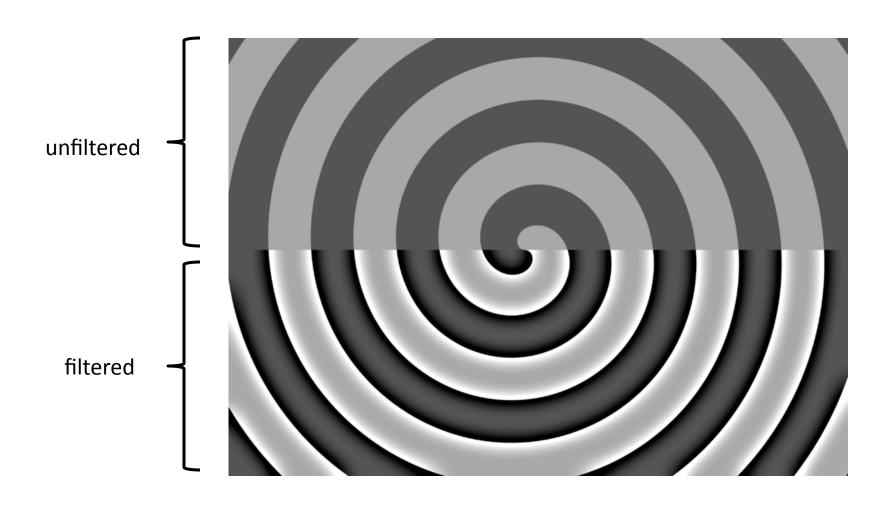
$$\downarrow \text{cidentity}$$

$$\text{scaled impulse}$$

$$\text{Gaussian}$$

$$\text{Laplacian of Gaussian}$$

Sharpen filter



"Optical" Convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html