CS4670: Computer Vision

Noah Snavely

Lecture 31: Photometric stereo

What happens when a light ray hits an object?

Some of the light gets absorbed

converted to other forms of energy (e.g., heat)

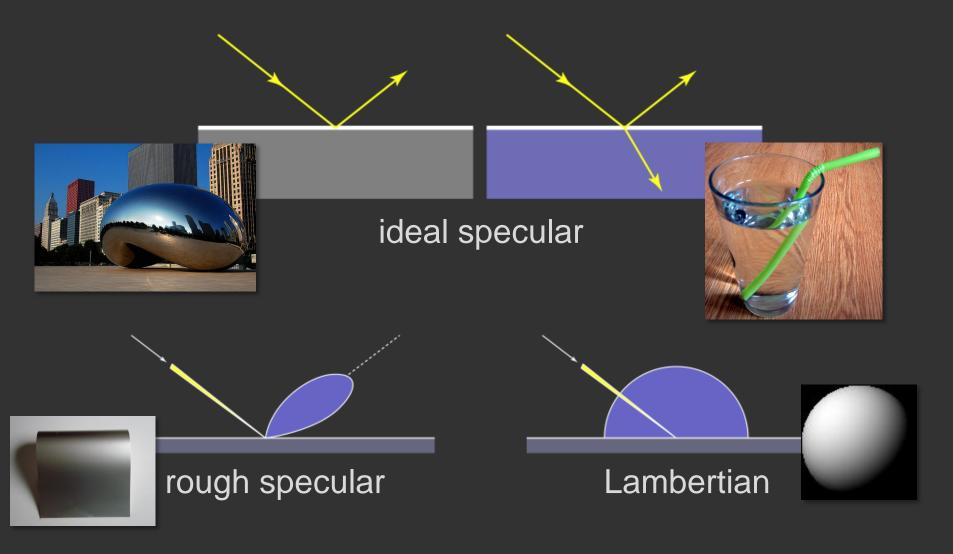
Some gets transmitted through the object

- possibly bent, through "refraction"
- a transmitted ray could possible bounce back

Some gets reflected

 as we saw before, it could be reflected in multiple directions (possibly all directions) at once

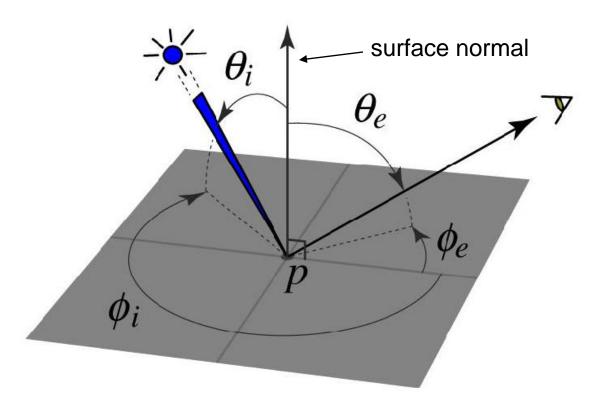
Classic reflection behavior



The BRDF

The Bidirectional Reflection Distribution Function

• Given an incoming ray (θ_i, ϕ_i) and outgoing ray (θ_e, ϕ_e) what proportion of the incoming light is reflected along outgoing ray?



Answer given by the BRDF: $ho(heta_i,\phi_i, heta_e,\phi_e)$

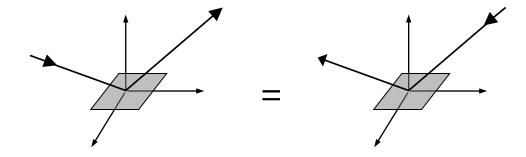
Constraints on the BRDF

Energy conservation

- Quantity of outgoing light ≤ quantity of incident light
 - integral of BRDF ≤ 1

Helmholtz reciprocity

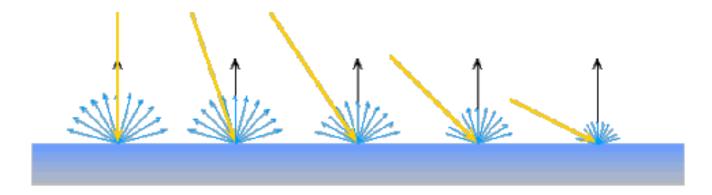
reversing the path of light produces the same reflectance



Diffuse reflection

Diffuse reflection governed by Lambert's law

- Viewed brightness does not depend on viewing direction
- Brightness does depend on direction of illumination
- This is the model most often used in computer vision



L, N, V unit vectors I_e = outgoing radiance I_i = incoming radiance

Lambert's Law: $I_e = k_d \mathbf{N} \cdot \mathbf{L} I_i$ k_d is called **albedo**

BRDF for Lambertian surface

 $\rho(\theta_i, \phi_i, \theta_e, \phi_e) = k_d \cos \theta_i$

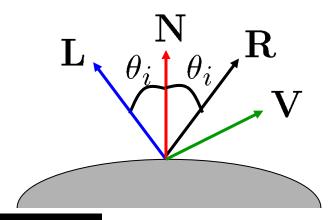
Diffuse reflection

<u>Demo</u>

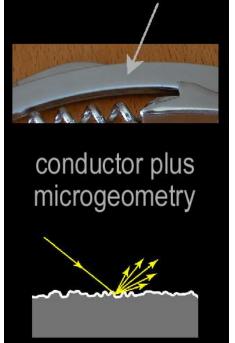
http://www.math.montana.edu/frankw/ccp/multiworld/twothree/lighting/applet1.htm http://www.math.montana.edu/frankw/ccp/multiworld/twothree/lighting/learn2.htm

Specular reflection

For a perfect mirror, light is reflected about N

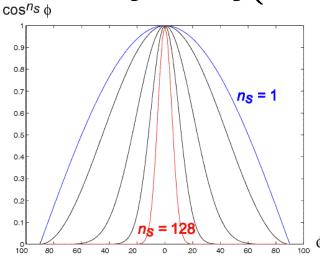


$$\mathbf{V} \qquad I_e = \begin{cases} I_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

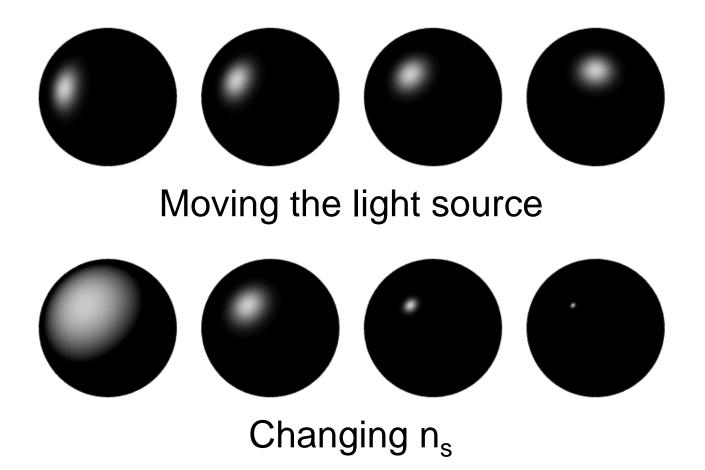


Near-perfect mirrors have a highlight around R

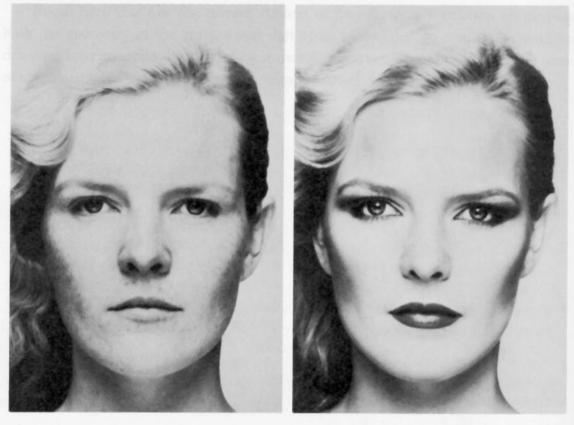
• common model: $I_e = k_s (\mathbf{V} \cdot \mathbf{R})^{n_s} I_i$



Specular reflection



Photometric Stereo

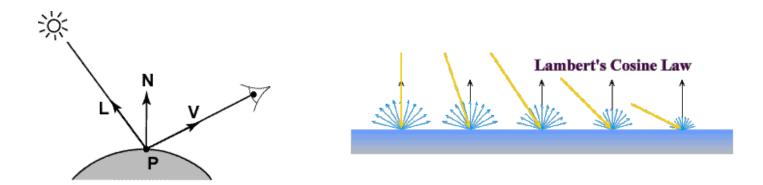


Merle Norman Cosmetics, Los Angeles

Readings

 R. Woodham, Photometric Method for Determining Surface Orientation from Multiple Images. Optical Engineering 19(1)139-144 (1980). (PDF)

Diffuse reflection

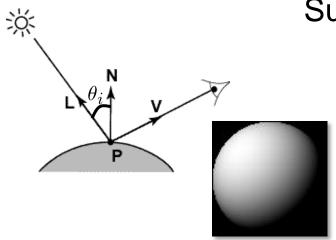


$$R_e = k_d \mathbf{N} \cdot \mathbf{L} R_i$$
 image intensity of $\mathbf{P} \longrightarrow I = k_d \mathbf{N} \cdot \mathbf{L}$

Simplifying assumptions

- I = R_e: camera response function is the identity function:
- R_i = 1: light source intensity is 1
 - can achieve this by dividing each pixel in the image by R_i

Shape from shading



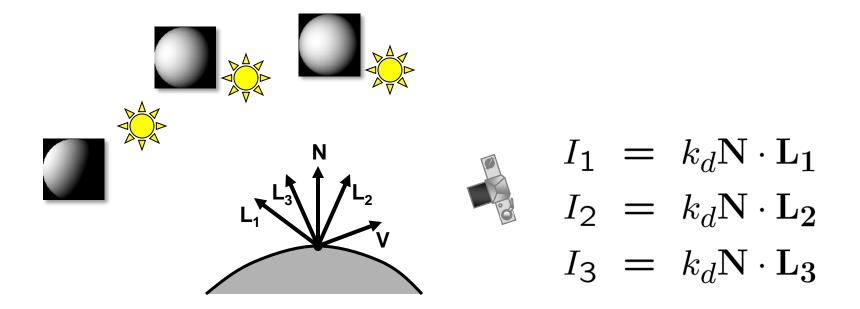
Suppose
$$k_d = 1$$

$$I = k_d \mathbf{N} \cdot \mathbf{L}$$
$$= \mathbf{N} \cdot \mathbf{L}$$
$$= \cos \theta_i$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
 - assume a few of the normals are known (e.g., along silhouette)
 - constraints on neighboring normals—"integrability"
 - smoothness
- Hard to get it to work well in practice
 - plus, how many real objects have constant albedo?

Photometric stereo



Can write this as a matrix equation:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = k_d \begin{vmatrix} \mathbf{L_1}^T \\ \mathbf{L_2}^T \\ \mathbf{L_3}^T \end{vmatrix} \mathbf{N}$$

Solving the equations

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \mathbf{L}_1^T \\ \mathbf{L}_2^T \\ \mathbf{L}_3^T \end{bmatrix} k_d \mathbf{N}$$

$$\mathbf{I}_{3 \times 1} \quad \mathbf{L}_{3 \times 3} \quad \mathbf{G}_{3 \times 1}$$

$$\mathbf{G} = \mathbf{L}^{-1} \mathbf{I}$$

$$k_d = \|\mathbf{G}\|$$

$$\mathbf{N} = \frac{1}{k_d} \mathbf{G}$$

More than three lights

Get better results by using more lights

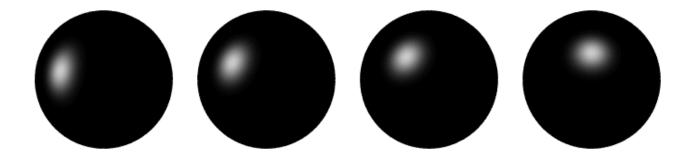
$$\begin{bmatrix} I_1 \\ \vdots \\ I_n \end{bmatrix} = \begin{bmatrix} \mathbf{L_1} \\ \vdots \\ \mathbf{L_n} \end{bmatrix} k_d \mathbf{N}$$

Least squares solution:

$$egin{array}{lll} I &=& LG \ L^TI &=& L^TLG \ G &=& (L^TL)^{-1}(L^TI) \end{array}$$
 Solve for N, k_d as before

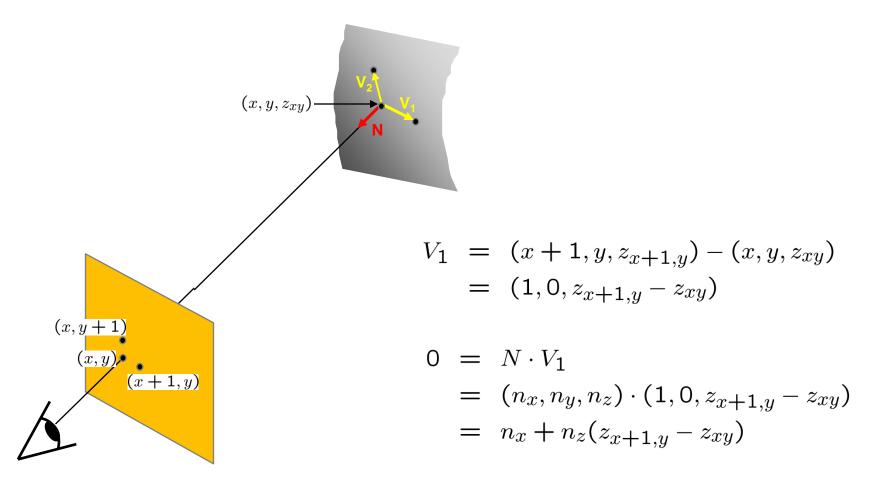
Computing light source directions

Trick: place a chrome sphere in the scene



the location of the highlight tells you where the light source is

Depth from normals



Get a similar equation for V₂

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Example

What if we don't have mirror ball?

Hayakawa, Journal of the Optical Society of America, 1994, Photometric stereo under a light source with arbitrary motion.

Limitations

Big problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

Smaller problems

- camera and lights have to be distant
- calibration requirements
 - measure light source directions, intensities
 - camera response function

Newer work addresses some of these issues

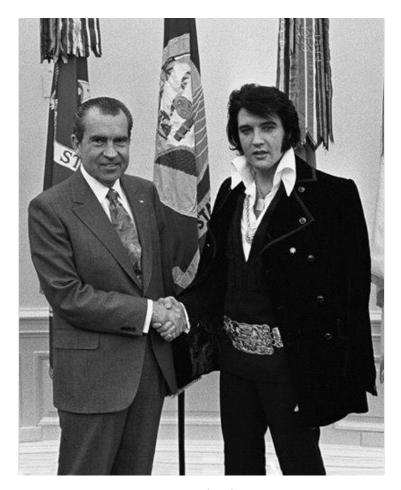
Some pointers for further reading:

- Zickler, Belhumeur, and Kriegman, "<u>Helmholtz Stereopsis: Exploiting</u>
 <u>Reciprocity for Surface Reconstruction</u>." IJCV, Vol. 49 No. 2/3, pp 215-227.
- Hertzmann & Seitz, "<u>Example-Based Photometric Stereo: Shape</u> <u>Reconstruction with General, Varying BRDFs</u>." IEEE Trans. PAMI 2005

Application: Detecting composite photos

Which is the real photo?

Fake photo



Real photo