CS4670: Computer Vision

Noah Snavely

Lecture 29: Recent work in recognition

Visual Object Classes Challenge 2009 (VOC2009)

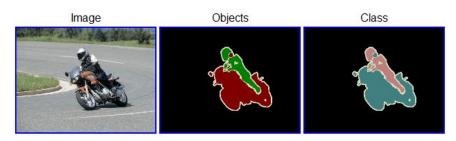
Object recognition

- Category recognition has been the focus of extensive research in the past decade
- Extensive use and development of machine learning techniques, better features

- Moderate-scale datasets derived from the Web
 - PASCAL VOC: 20 object categories, > 10K images,
 > 25K instances, hand-labeled ground truth, annual competitions

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- Twenty object categories (aeroplane to TV/monitor)
- Three challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge



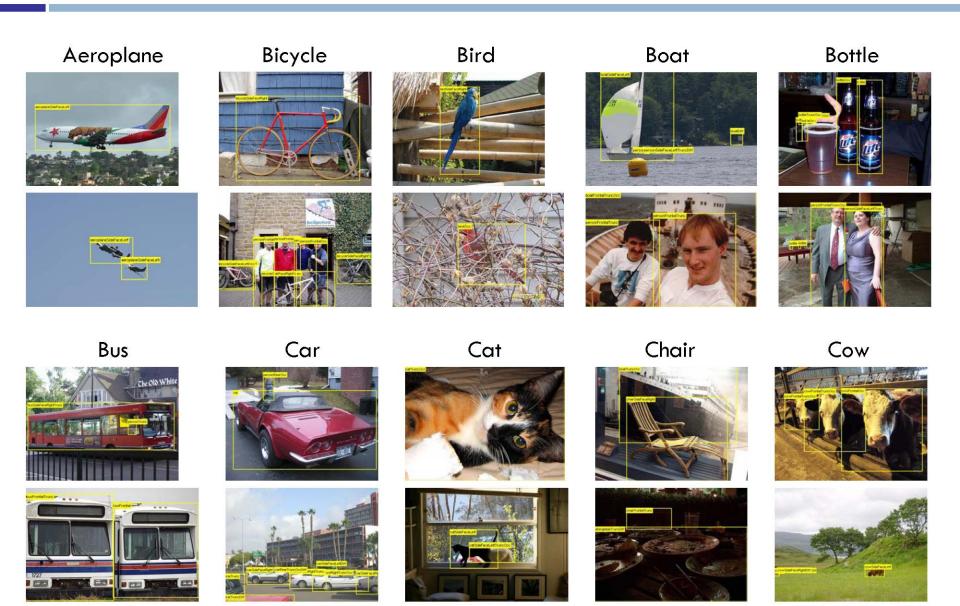
Dataset: Collection

- Images downloaded from flickr
 - 500,000 images downloaded and random subset selected for annotation

Dataset: Annotation

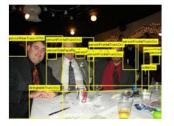
- Complete annotation of all objects
- Annotated over web with <u>written guidelines</u>
 - High quality (?)

Examples



Examples

Dining Table



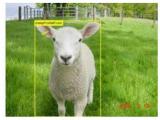
Horse

Motorbike

Person

Potted Plant

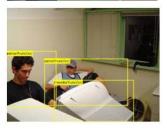
Sheep



Sofa

Train

TV/Monitor



Classification Challenge

 Predict whether at least one object of a given class is present in an image

is there a cat?

Participation

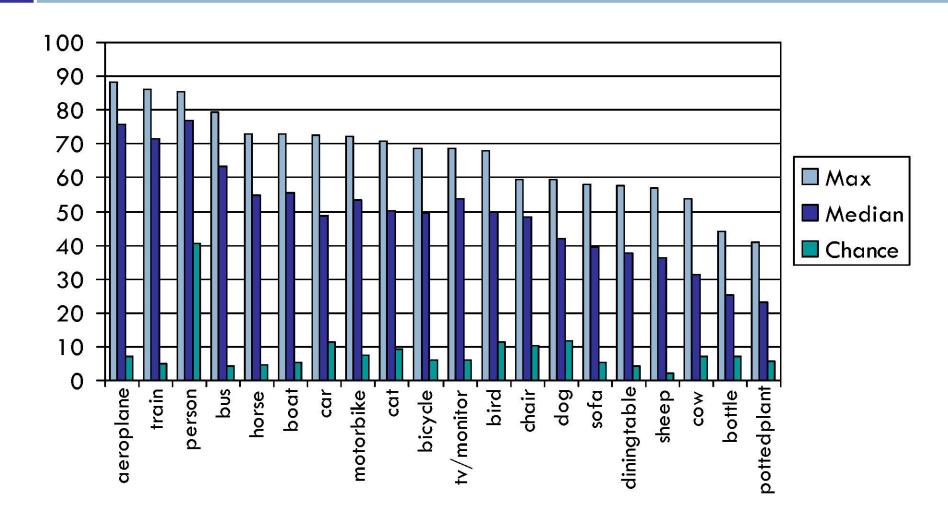
48 Methods, 20 Groups

Results: AP by Method and Class

	aero plane	bicycle	bird	boat	bottle	bus	car	cert	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor
CVC_FLAT	85.3	<i>57.</i> 8	66.0	66.1	36.2	<i>7</i> 0.6	60.6	63.5	55.1	44.6	53.4	49.1	64.4	66.8	84.8	37.4	44.1	47.9	81.9	67.5
CVC_FLAT-HOG-ESS	86.3	60.7	66.4	65.3	41.0	71.7	64.7	63.9	55.5	40.1	51.3	45.9	65.2	68.9	85.0	40.8	49.0	49.1	81.8	68.6
CVC_PLUS	86.6	58.4	66.7	67.3	34.8	70.4	60.0	64.2	52.5	43.0	50.8	46.5	64.1	66.8	84.4	37.5	45.1	45.4	82.1	67.0
FIRSTNIKON_AVGSRKDA	83.3	59.3	62.7	65.3	30.2	71.6	58.2	62.2	54.3	40.7	49.2	50.0	66.6	62.9	83.3	34.2	48.2	46.1	83.4	65.5
FIRSTNIKON_AVGSVM	83.8	58.2	62.6	65.2	32.0	69.8	57.7	61.1	54.5	44.0	50.3	49.6	64.6	61.7	83.2	33.4	46.5	48.0	81.6	65.3
FIRSTNIKON_BOOSTSRKDA	83.0	59.2	61.4	64.6	33.2	71.1	<i>57.</i> 5	61.0	54.8	40.7	48.3	50.0	65.5	63.4	82.8	32.8	47.0	47.1	83.3	64.6
FIRSTNIKON_BOOSTSVMS	83.5	56.8	61.8	65.5	33.2	69.7	<i>57.</i> 3	60.5	54.6	43.1	48.3	50.3	64.3	62.4	82.3	32.9	46.9	48.4	82.0	64.2
LEAR_CHI-SVM-MULT-LOC	79.5	55 . 5	54.5	63.9	43.7	70.3	66.4	56.5	54.4	38.8	44.1	46.2	58.5	64.2	82.2	39.1	41.3	39.8	73.6	66.2
NECUIUC_CDCV	88.1	68.0	68.0	72.5	41.0	78.9	70.4	70.4	58.1	53.4	55.7	59.3	73.1	71.3	84.5	32.3	53.3	56.7	86.0	66.8
NECUIUC_CLS-DTCT	88.0	68.6	67.9	72.9	44.2	79.5	72.5	70.8	59.5	53.6	<i>57.</i> 5	59.0	72.6	72.3	85.3	36.6	56.9	57.9	85.9	68.0
NECUIUC_LL-CDCV	87.1	67.4	65.8	72.3	40.9	78.3	69.7	69.7	58.5	50.1	55.1	56.3	71.8	70.8	84.1	31.4	51.5	55.1	84.7	65.2
NECUIUC_LN-CDCV	87.7	67.8	68.1	71.1	39.1	78.5	70.6	70.7	57.4	51.7	53.3	59.2	71.6	70.6	84.0	30.9	51.7	55.9	85.9	66.7
UVASURREY_BASELINE	84.1	59.2	62.7	65.4	35 <i>.</i> 7	70.6	59.8	61.3	56.7	45.3	52.4	50.6	66.1	66.6	83.7	34.8	47.2	47.7	80.8	65.9
UVASURREY_MKFDA+BOW	84.7	63.9	66.1	67.3	37.9	74.1	63.2	64.0	<i>57.</i> 1	46.2	54.7	53.5	68.1	70.6	85.2	38.5	47.2	49.3	83.2	68.1
UVASURREY_TUNECOLORKERNELSEL	85.0	62.8	65.1	66.5	37.6	73.5	62.1	62.0	57.4	45.1	54.5	52.5	67.7	69.8	84.8	39.1	46.8	49.9	82.9	68.1
UVASURREY_TUNECOLORSPECKDA	84.6	62.4	65.6	67.2	39.4	74.0	63.4	62.8	56.7	43.8	54.7	52.7	67.3	70.6	85.0	38.8	46.9	50.0	82.2	66.2

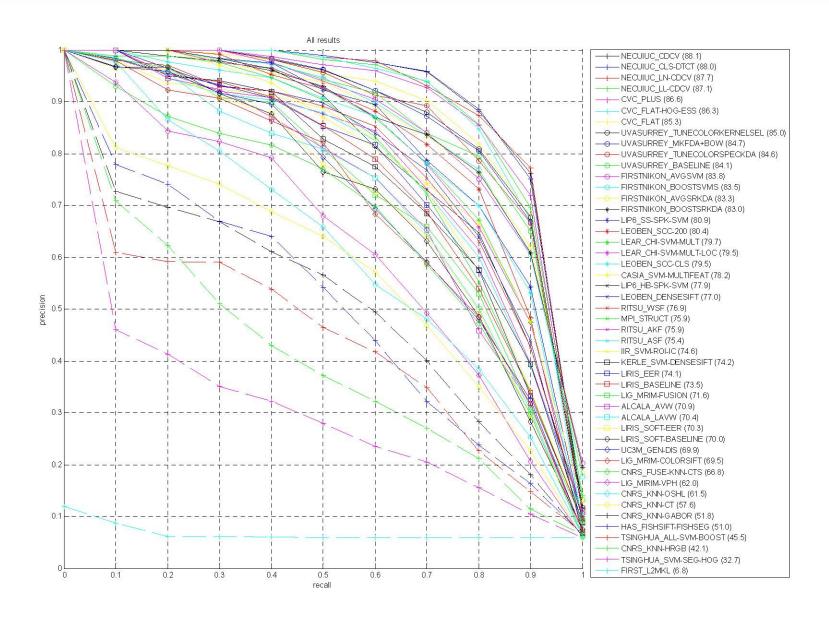
- Only methods in 1st, 2nd or 3rd place by group shown
- Groups: CVC, FIRST/Nikon, NEC/UIUC, UVA/Surrey

AP by Class

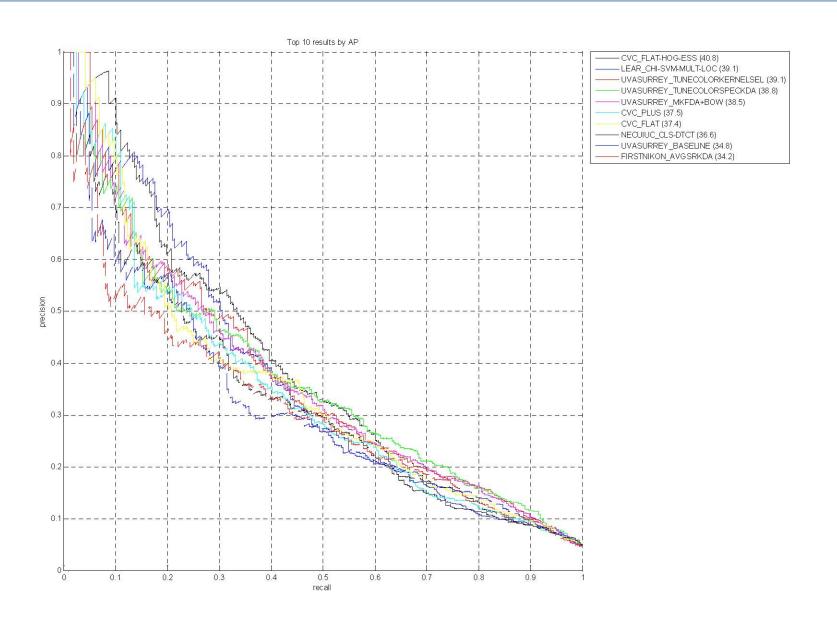


Max AP: 88.1% (aeroplane) ... 40.8% (potted plant)

Precision/Recall: Aeroplane (All)



Precision/Recall: Potted plant (Top 10 by AP)

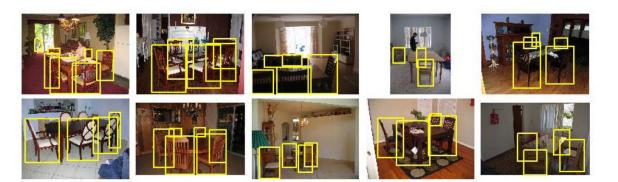


Ranked Images: Aeroplane

Class images: Highest ranked

Ranked Images: Chair

Class images: Highest ranked

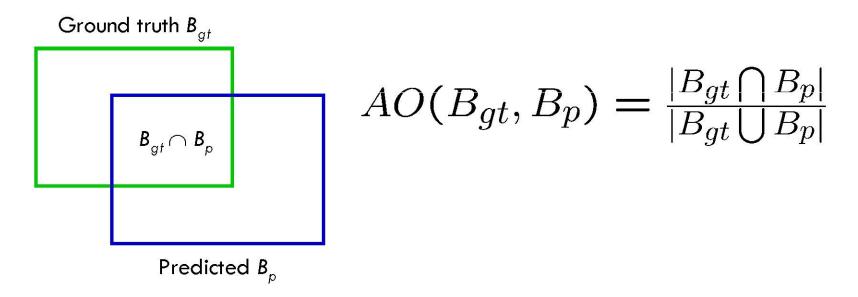


Detection Challenge

 Predict the bounding boxes of all objects of a given class in an image (if any)

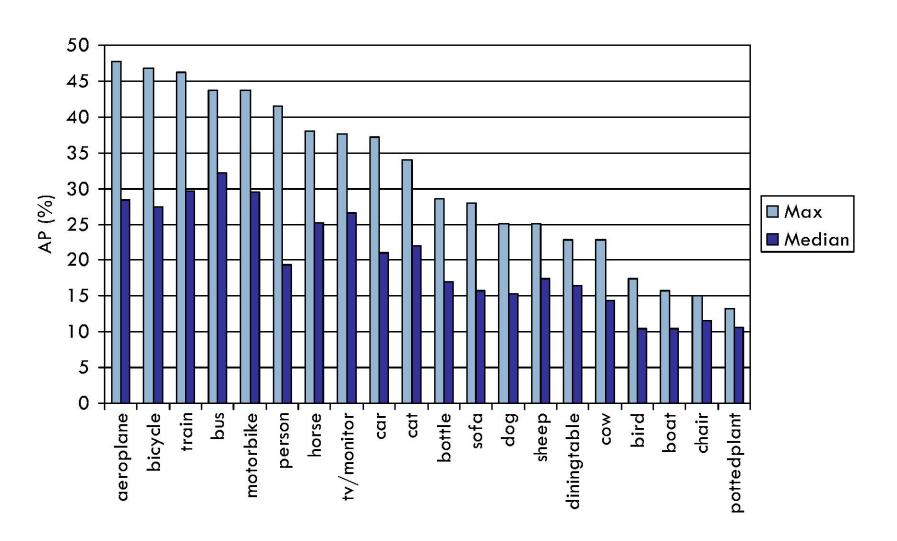
Evaluating Bounding Boxes

Area of Overlap (AO) Measure



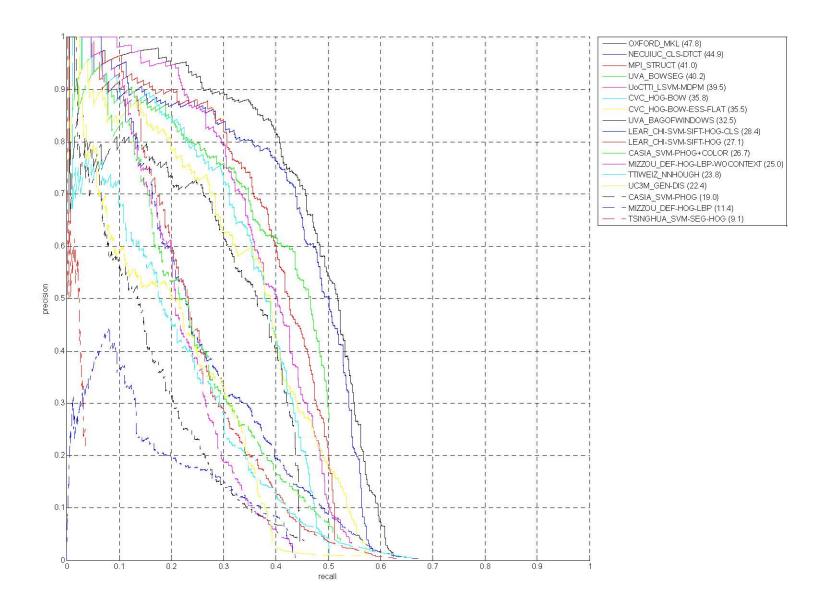
Need to define a threshold t such that $AO(B_{at}, B_{p})$ implies a correct detection: 50%

AP by Class

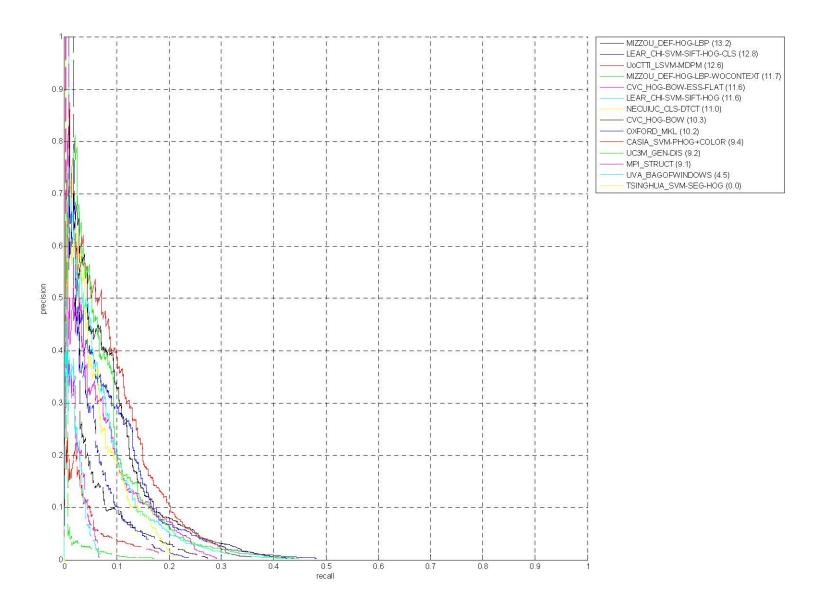


Chance essentially 0

Precision/Recall - Aeroplane



Precision/Recall - Potted plant



True Positives - Person

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT

False Positives - Person

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT

"Near Misses" - Person

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT



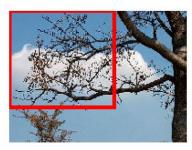
True Positives - Bicycle

OXFORD_MKL

NECUIUC_CLS-DTCT

False Positives - Bicycle

OXFORD_MKL



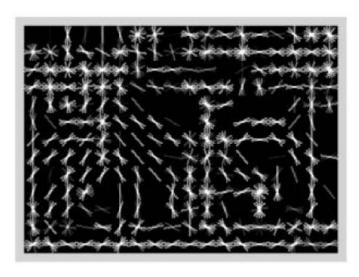
NECUIUC_CLS-DTCT

Best localization methods

- Sliding window-style classifiers
 - SVM, Adaboost
 - Flexible spatial template: "star model"

- Separate classifiers by viewpoint
- Use of context in classifiers
- Local features
 - HoG, SIFT, local histograms of gradient orientations

HoG features



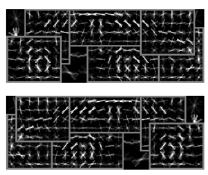
- Image partitioned into 8x8 blocks
- In each block, compute histogram of gradient orientations

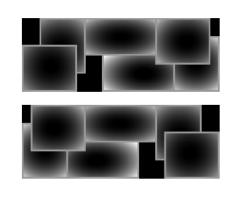
Flexible Spatial Template (UofC-TTI)

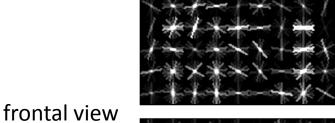
- Hierarchical model [Felzenszwalb et al 2008]
 - Coarse template for finding the root part
 - Fine-scale templates connected by springs
 - Learning automatically from labeled bounding boxes

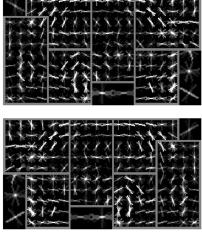
Separate models per viewpoint

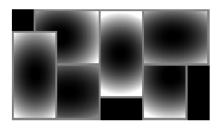
Six-component car model

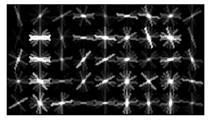


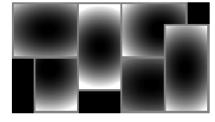












root filters (coarse)

part filters (fine)

deformation models

Six-component person model

