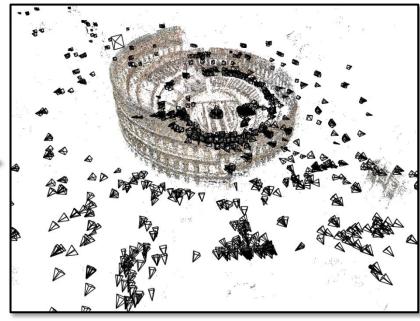
CS6670: Computer Vision

Noah Snavely

Lecture 23: Structure from motion and multi-view stereo



Readings

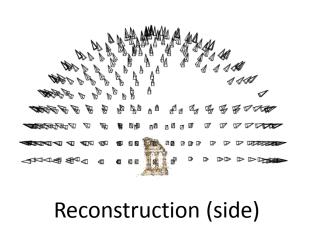
• Szeliski, Chapter 7.1 – 7.4, 11.6

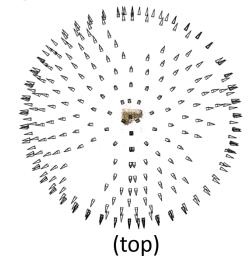
Announcements

Project 2b due on Tuesday by 10:59pm

Final project proposals feedback soon

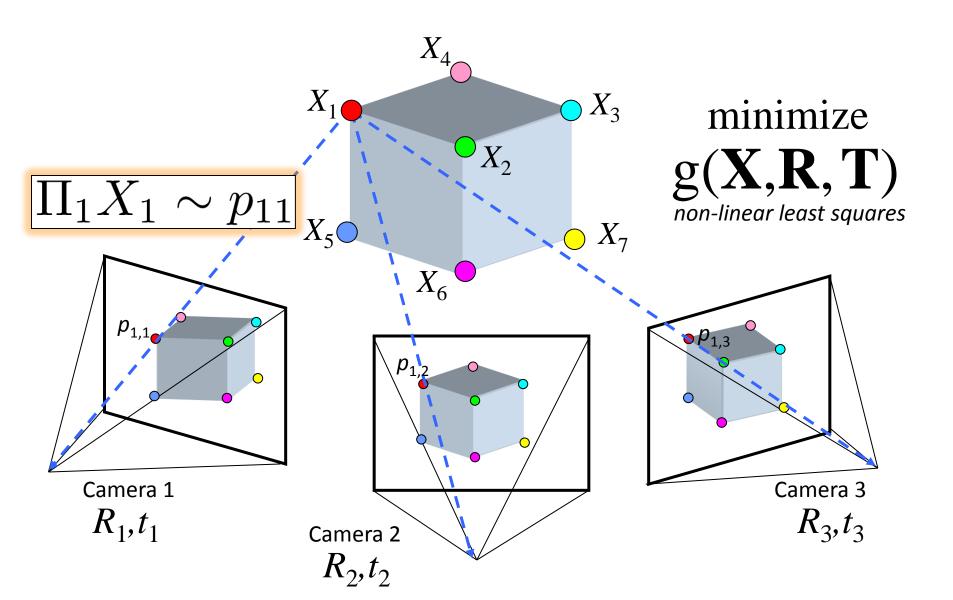
Structure from motion





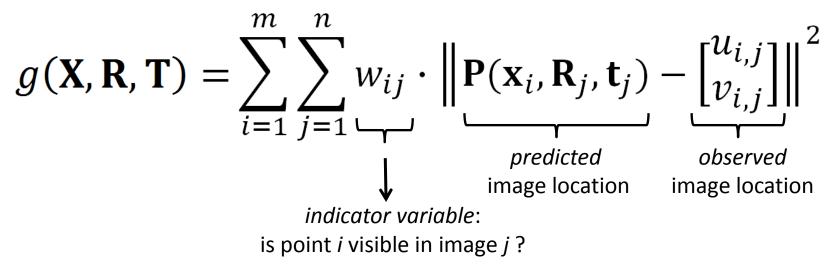
- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters \mathbf{R}_j , \mathbf{t}_j possibly \mathbf{K}_j
- Objective function: minimize reprojection error

Structure from motion



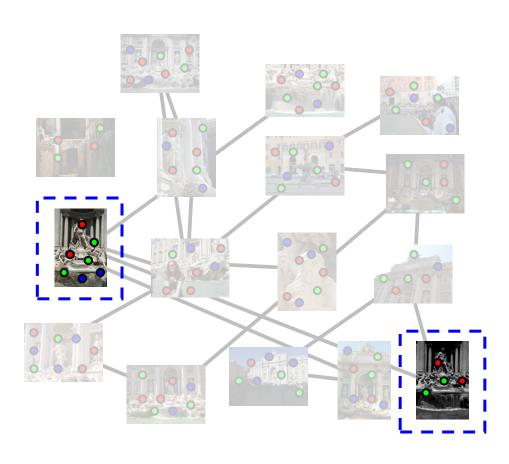
Structure from motion

Minimize sum of squared reprojection errors:

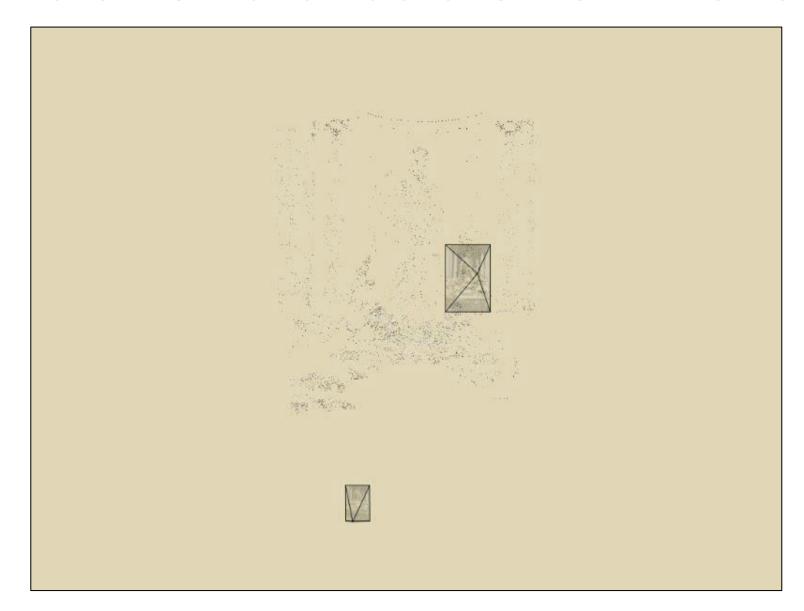


- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares,
 e.g. Levenberg-Marquardt

Incremental structure from motion



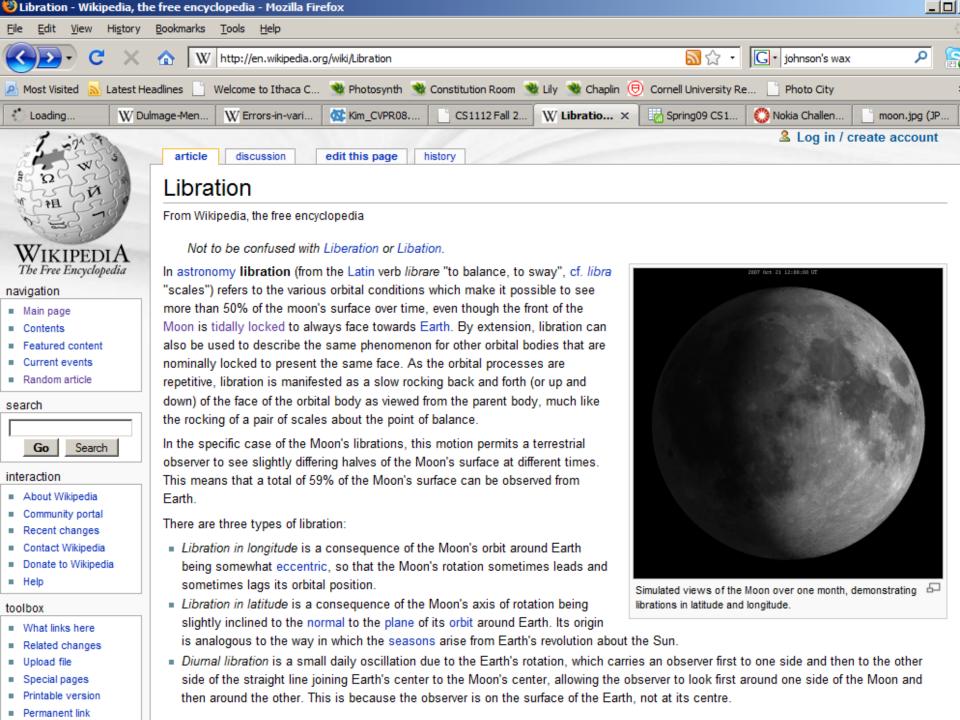
Incremental structure from motion



Incremental structure from motion

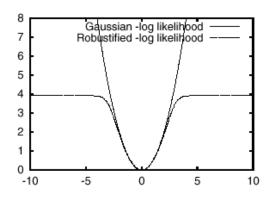
Photo Explorer

Demo



Extensions to SfM

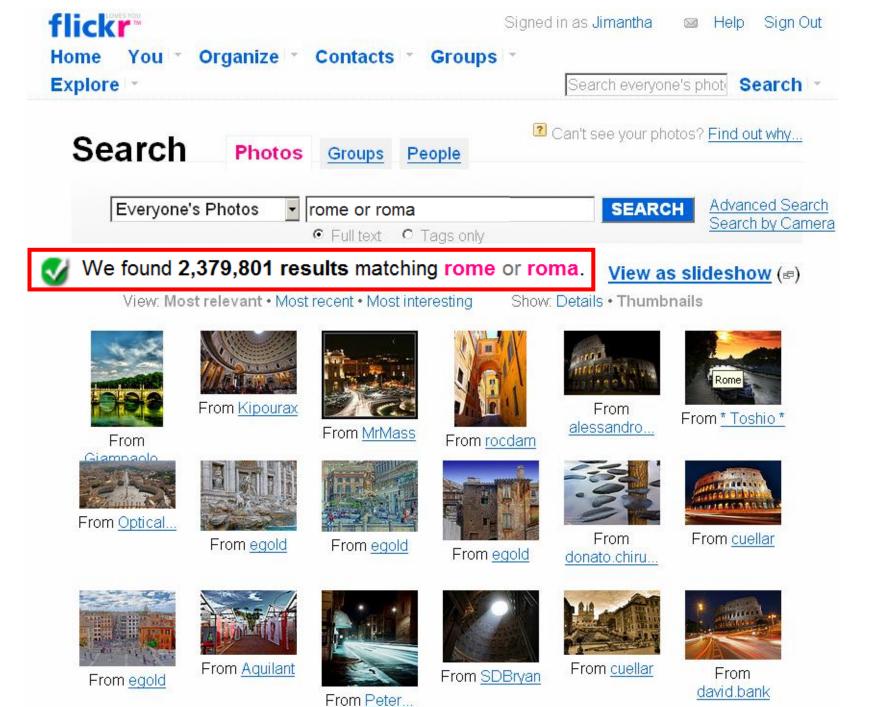
- Can also solve for intrinsic parameters (focal length, radial distortion, etc.)
- Can use a more robust function than squared error, to avoid fitting to outliers

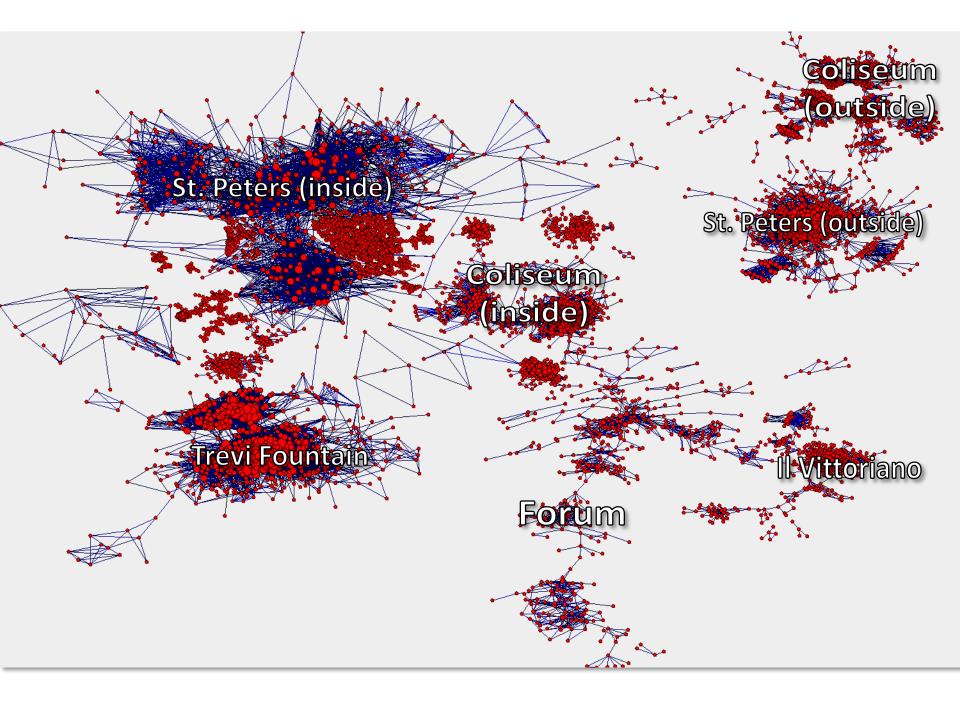


 For more information, see: Triggs, et al, "Bundle Adjustment – A Modern Synthesis", Vision Algorithms 2000.

Questions?

Can we reconstruct entire cities?





Gigantic matching problem

- 1,000,000 images \rightarrow 500,000,000,000 pairs
 - Matching all of these on a 1,000-node cluster would take more than a year, even if we match 10,000 every second
 - And involves TBs of data

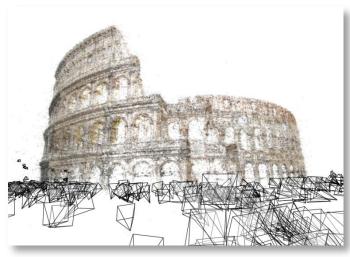
- The vast majority (>99%) of image pairs do not match
- There are better ways of finding matching images (more on this later)

Gigantic SfM problem

- Largest problem size we've seen:
 - 15,000 cameras
 - 4 million 3D points
 - more than 12 million parameters
 - more than 25 million equations

- Huge optimization problem
- Requires sparse least squares techniques

Building Rome in a Day



Colosseum

St. Peter's Basilica

Trevi Fountain

Dubrovnik

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352

San Marco Square

San Marco Square and environs, Venice. 14,079 photos, out of an initial 250,000. Total reconstruction time: 3 days. Number of cores: 496.

Multi-view stereo

Stereo

Multi-view stereo

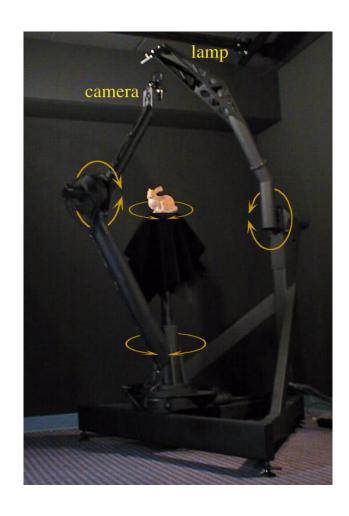
Multi-view Stereo

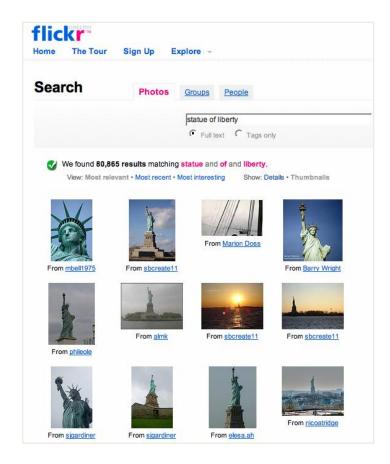
Point Grey's Bumblebee XB3

Point Grey's ProFusion 25

CMU's 3D Room

Multi-view Stereo

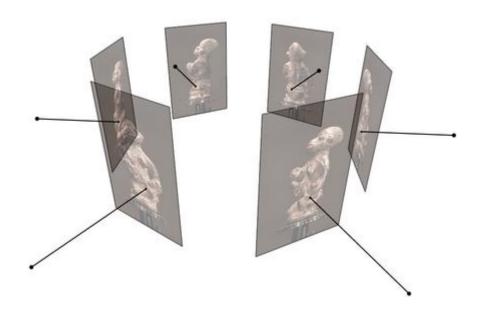




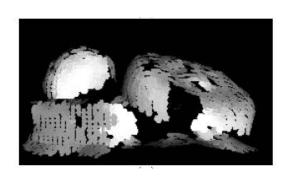
Multi-view Stereo

Input: calibrated images from several viewpoints

Output: 3D object model

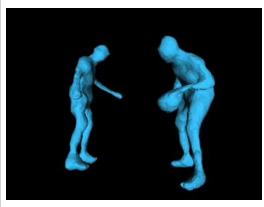


Figures by Carlos Hernandez



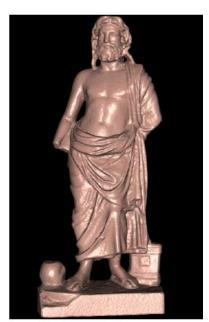
Fua **1995**

Seitz, Dyer 1997



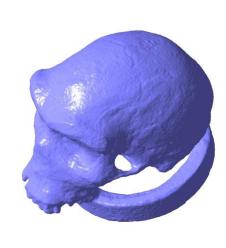
Narayanan, Rander, Kanade 1998

Faugeras, Keriven 1998



Hernandez, Schmitt **2004**

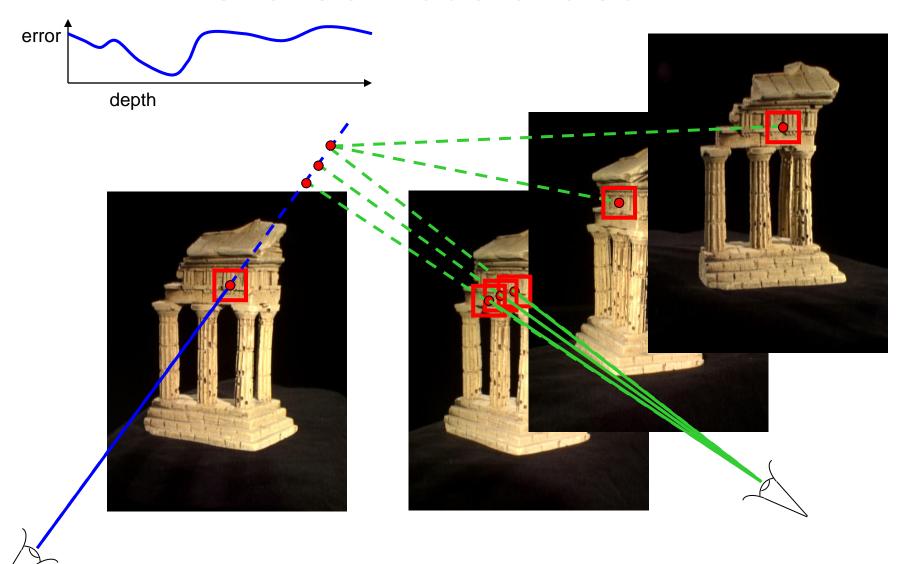
Pons, Keriven, Faugeras **2005**



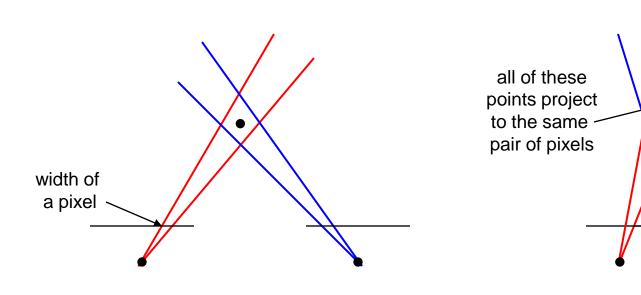
Furukawa, Ponce **2006**

Goesele et al. **2007**

Stereo: basic idea



Choosing the stereo baseline



Large Baseline

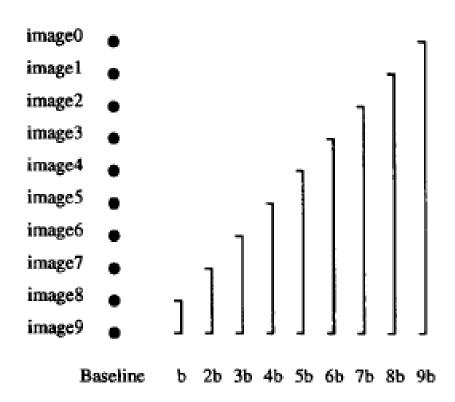
Small Baseline

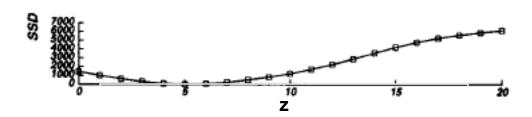
What's the optimal baseline?

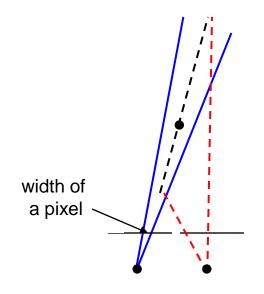
- Too small: large depth error
- Too large: difficult search problem

The Effect of Baseline on Depth Estimation

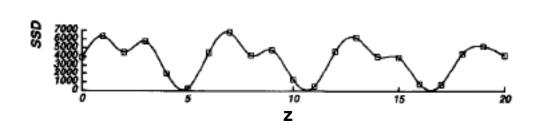
Figure 2: An example scene. The grid pattern in the background has ambiguity of matching.

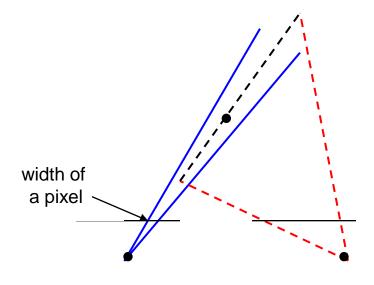






pixel matching score





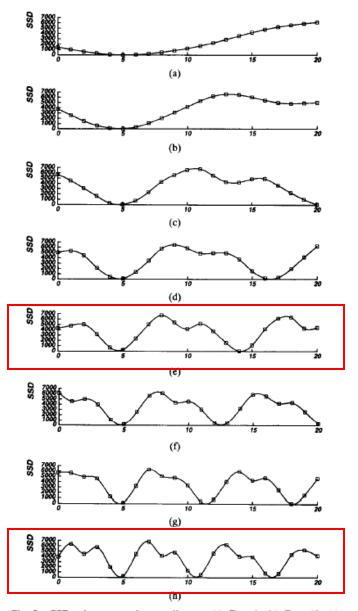


Fig. 5. SSD values versus inverse distance: (a) B=b; (b) B=2b; (c) B=3b; (d) B=4b; (e) B=5b; (f) B=6b; (g) B=7b; (h) B=8b. The horizontal axis is normalized such that 8bF=1.

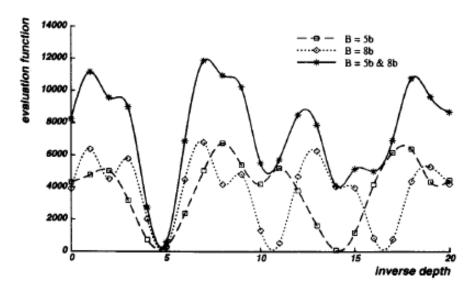


Fig. 6. Combining two stereo pairs with different baselines.

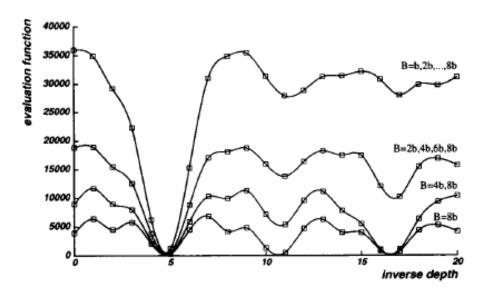


Fig. 7. Combining multiple baseline stereo pairs.

Multibaseline Stereo

Basic Approach

- Choose a reference view
- Use your favorite stereo algorithm BUT
 - replace two-view SSD with SSSD over all baselines

Limitations

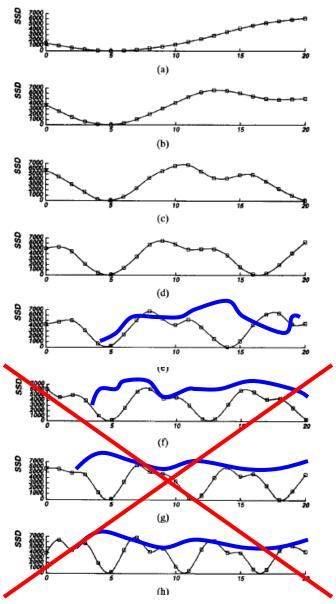


Fig. 5. SSD values versus inverse distance: (a) B=b; (b) B=2b; (c) B=3b; (d) B=4b; (e) B=5b; (f) B=6b; (g) B=7b; (h) B=8b. The horizontal axis is normalized such that 8bF=1.

Problem: visibility

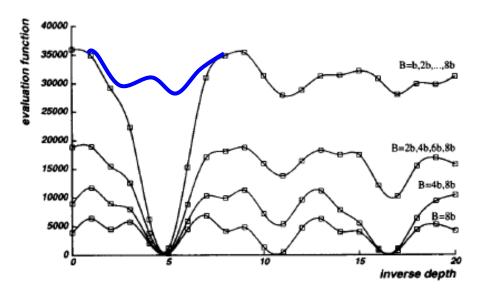


Fig. 7. Combining multiple baseline stereo pairs.

Some Solutions

- Match only nearby photos [Narayanan 98]
- Use NCC instead of SSD,
 Ignore NCC values > threshold
 [Hernandez & Schmitt 03]

Popular matching scores

SSD (Sum Squared Distance)

$$\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2$$

NCC (Normalized Cross Correlation)

$$\frac{\sum_{x,y} (W_1(x,y) - \overline{W_1})(W_2(x,y) - \overline{W_2})}{\sigma_{W_1} \sigma_{W_2}}$$

- where
$$\overline{W_i} = rac{1}{n} \sum_{x,y} W_i$$
 $\sigma_{W_i} = \sqrt{rac{1}{n} \sum_{x,y} (W_i - \overline{W_i})^2}$

– what advantages might NCC have?

Questions?