Triangle meshes

CS 465 Lecture 7

Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James •

Acknowledgement

• Most slides: Steve Marschner

Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James •

Notation

- n_T = #tris; n_V = #verts; n_E = #edges
- Euler: $n_{\overline{V}}$ $n_{\overline{E}}$ + $n_{\overline{T}}$ = 2 for a simple closed surface
 - and in general sums to small integer
 - argument has implication that $n_{_{\rm T}}{:}n_{_{\rm E}}{:}n_{_{\rm V}}$ is about 2:3:1

V = 8 E = 12 F = 6

Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James • 3

Validity of triangle meshes

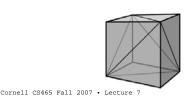
- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
 - topology: how the triangles are connected (ignoring the positions entirely)
 - geometry: where the triangles are in 3D space, i.e., the embedding of the mesh in 3-space.

Cornell CS465 Fall 2007 • Lecture 7

Topology/geometry examples

• same geometry, different mesh topology:

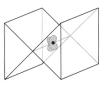
• same mesh topology, different geometry:



© 2007 Doug James •

Topological validity

- strongest property, and most simple: be a manifold
 - this means that no points should be "special"
 - Neighborhood of each point is topologically equivalent to a disk.
 - interior points are fine
 - edge points: each edge should have exactly 2 triangles
 - vertex points: each vertex should have one loop of triangles
 - not too hard to weaken this to allow boundaries



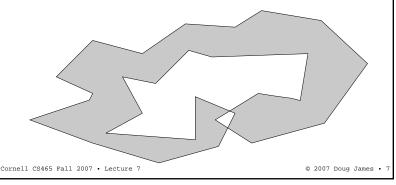
[Foley et al

Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James •

Geometric validity

- usually want non-self-intersecting surface
- hard to guarantee in general
 - because far-apart parts of mesh might intersect



Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - enumerate all triangles as triples of 3D points
- Efficiency of queries
 - all vertices of a triangle
 - all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing and cutting
 - physical simulation

Cornell CS465 Fall 2007 • Lecture 7

Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes

Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James •

Separate triangles

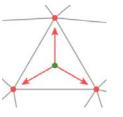
- array of triples of points
 - float[n_T][3][3]: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)
- various problems
 - wastes space (each vertex stored 6 times)
 - cracks due to round-off
 - difficulty of finding neighbors at all

Cornell CS465 Fall 2007 • Lecture 7

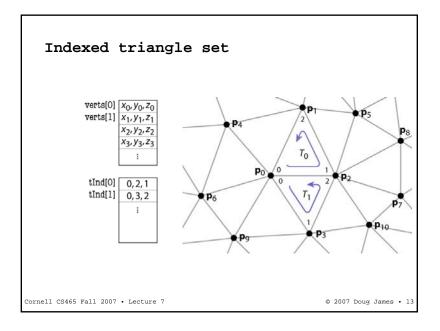
© 2007 Doug James • 11

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices



Cornell CS465 Fall 2007 • Lecture 7



Indexed triangle set

- array of vertex positions
 - $float[n_V][3]$: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - $int[n_T][3]$: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

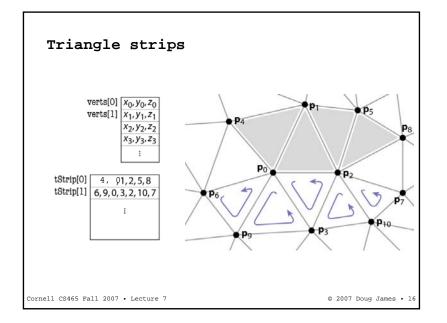
Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James • 14

Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous 1
 - let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - every sequence of three vertices produces a triangle (but not in the same order)
 - e.g., 0, 1, 2, 3, 4, 5, 6, 7, ... leads to
 (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7),
 - for long strips, this requires about one index per triangle

Cornell CS465 Fall 2007 . Lecture 7



Triangle strips

- array of vertex positions
 - float $[n_{v}][3]$: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of index lists
 - int[n_s][variable]: 2 + n indices per strip
 - on average, (1 + ϵ) indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh

Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James • 17

Triangle fans

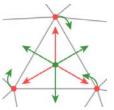
- Same idea as triangle strips, but keep oldest rather than newest
 - every sequence of three vertices produces a triangle
 - e. g., 0, 1, 2, 3, 4, 5, ... leads to
 (0 1 2), (0 2 3), (0 3 4), (0
 - for long fans, this requires about one index per triangle
- Memory considerations exactly the same as triangle strip

Cornell CS465 Fall 2007 · Lecture 7

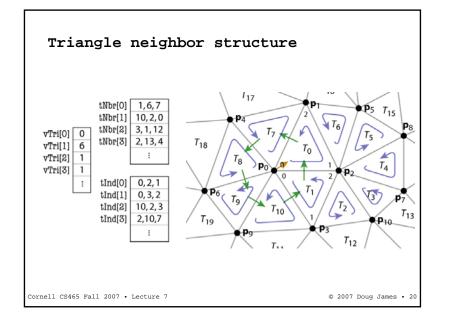
© 2007 Doug James • 18

Triangle neighbor structure

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex



Cornell CS465 Fall 2007 • Lecture 7



Triangle neighbor structure

- indexed mesh was 36 bytes per vertex
- add an array of triples of indices (per triangle)
 - $int[n_T][3]$: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 60 bytes per vertex
 - still not as much as separate triangles

Cornell CS465 Fall 2007 • Lecture 7

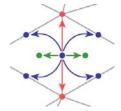
Cornell CS465 Fall 2007 . Lecture 7

© 2007 Doug James • 21

© 2007 Doug James • 23

Winged-edge mesh

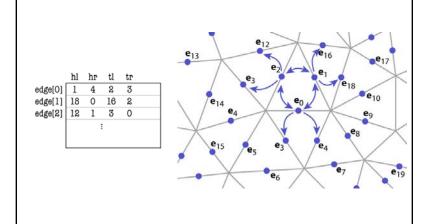
- Edge-centric rather than face-centric
 - therefore also works for polygon meshes
- Each (oriented) edge points to:
 - left and right forward edges
 - left and right backward edges
 - front and back vertices
 - left and right faces
- Each face or vertex points to one edge



Cornell CS465 Fall 2007 • Lecture 7

© 2007 Doug James • 22

Winged-edge structure



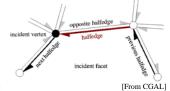
Winged-edge structure

- array of vertex positions: 12 bytes/vert
- array of 8-tuples of indices (per edge)
 - head/tail left/right edges + head/tail verts +
 left/right tris
 - $int[n_E][8]$: about 96 bytes per vertex
 - 3 edges per vertex (on average)
 - (8 indices x 4 bytes) per edge
- total storage: 108 bytes per vertex
 - so this is more complex than neighbor pointers
 - but it is cleaner and generalizes to polygon meshes

Cornell CS465 Fall 2007 • Lecture 7

Half-edge Mesh

- Edge-centric rather than face-centric
- Half-edge version of winged-edge
- Each (oriented) half-edge points to:
 - next edge
 - opposite edge
 - head vertex
 - left face



- Each face points to one edge
- Each vertex points to one incident edge
- Same storage requirements as winged-edge
 - Different interface

Cornell CS465 Fall 2007 • Lecture 7

