

Vector math review

- · Vectors and points
- Vector operations
 - addition
 - scalar product
- More products
 - dot product
 - cross product
- Bases and orthogonality

Cornell CS465 Fall 2007 • Lecture 3

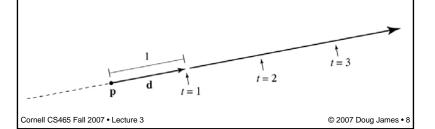
© 2007 Doug James • 7

Ray: a half line

• Standard representation: point **p** and direction **d**

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- this is a *parametric equation* for the line
- lets us directly generate the points on the line
- if we restrict to t > 0 then we have a ray
- note replacing **d** with a**d** doesn't change ray (a > 0)



Ray-sphere intersection: algebraic

• Condition 1: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

• Condition 2: point is on sphere

- assume unit sphere; see Shirley or notes for general

$$\|\mathbf{x}\| = 1 \Leftrightarrow \|\mathbf{x}\|^2 = 1$$

 $f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - 1 = 0$

Substitute:

$$(\mathbf{p} + t\mathbf{d}) \cdot (\mathbf{p} + t\mathbf{d}) - 1 = 0$$

- this is a quadratic equation in t

Cornell CS465 Fall 2007 • Lecture 3

Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 9

© 2007 Doug James • 11

Ray-sphere intersection: algebraic

• Solution for *t* by quadratic formula:

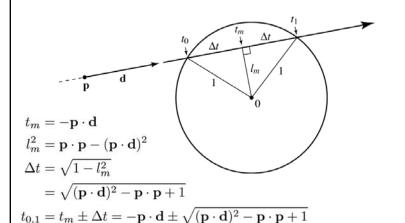
$$t = \frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - (\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p} - 1)}}{\mathbf{d} \cdot \mathbf{d}}$$
$$t = -\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - \mathbf{p} \cdot \mathbf{p} + 1}$$

- simpler form holds when d is a unit vector but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

Cornell CS465 Fall 2007 • Lecture 3

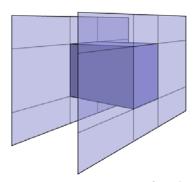
© 2007 Doug James • 10

Ray-sphere intersection: geometric



Ray-box intersection

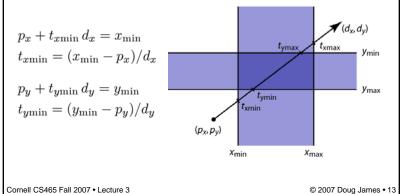
- · Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

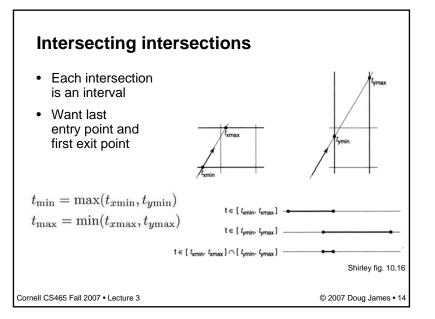


Cornell CS465 Fall 2007 • Lecture 3

Ray-slab intersection

- 2D example
- 3D is the same!





Ray-triangle intersection

• Condition 1: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

• Condition 2: point is on plane

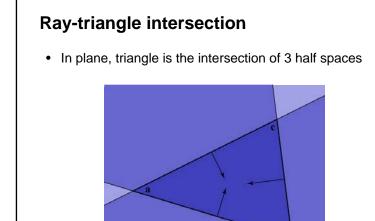
$$(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0$$

- Condition 3: point is on the inside of all three edges
- First solve 1&2 (ray-plane intersection)
 - substitute and solve for t.

$$(\mathbf{p} + t\mathbf{d} - \mathbf{a}) \cdot \mathbf{n} = 0$$
$$t = \frac{(\mathbf{a} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

Cornell CS465 Fall 2007 • Lecture 3

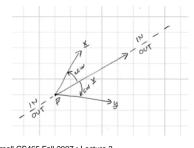
© 2007 Doug James • 15

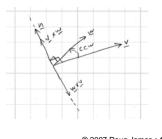


Cornell CS465 Fall 2007 • Lecture 3

Inside-edge test

- · Need outside vs. inside
- · Reduce to clockwise vs. counterclockwise
 - vector of edge to vector to x
- · Use cross product to decide

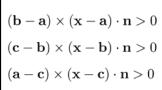


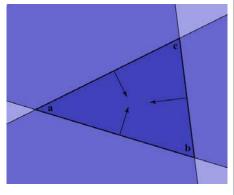


Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 17

Ray-triangle intersection





Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 18

Image so far

Cornell CS465 Fall 2007 • Lecture 3

• With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);

for 0 <= iy < ny

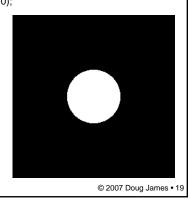
for 0 <= ix < nx {

    ray = camera.getRay(ix, iy);

    if (s.intersect(ray, 0, +inf) < +inf)

        image.set(ix, iy, white);

}
```



Intersection against many shapes

The basic idea is:

```
hit (ray, tMin, tMax) {
   tBest = +inf; hitSurface = null;
   for surface in surfaceList {
        t = surface.intersect(ray, tMin, tMax);
        if t < tBest {
            tBest = t;
            hitSurface = surface;
        }
   }
   return hitSurface, t;
}
```

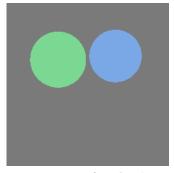
 this is linear in the number of shapes but there are sublinear methods (acceleration structures)

Cornell CS465 Fall 2007 • Lecture 3

Image so far

• With eye ray generation and scene intersection

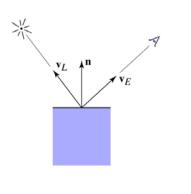
```
for 0 <= iy < ny
  for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    c = scene.trace(ray, 0, +inf);
    image.set(ix, iy, c);
}
...
trace(ray, tMin, tMax) {
  surface, t = hit(ray, tMin, tMax);
  if (surface != null) return surface.color();
  else return black;
}</pre>
```



© 2007 Doug James • 21

Shading

- · Compute light reflected toward camera
- Inputs:
 - eye direction
 - light direction (for each of many lights)
 - surface normal
 - surface parameters (color, shininess, ...)
- More on this in the next lecture

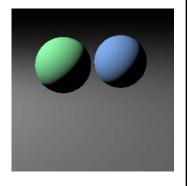


Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 22

Image so far

Cornell CS465 Fall 2007 • Lecture 3



© 2007 Doug James • 23

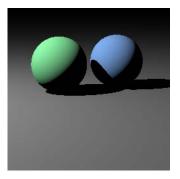
Shadows

- Surface is only illuminated if nothing blocks its view of the light.
- · With ray tracing it's easy to check
 - just intersect a ray with the scene!

Cornell CS465 Fall 2007 • Lecture 3

Image so far

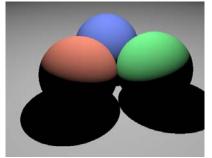
```
shade(ray, point, normal, light) {
    shadRay = (point, light.pos - point);
    if (shadRay not blocked) {
        v_E = -normalize(ray.direction);
        v_L = normalize(light.pos - point);
        // compute shading
    }
    return black;
}
```



Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 25

Solution: shadow rays start a tiny distance from the surface



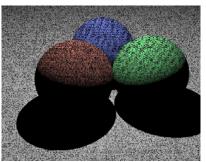
• Do this by moving the start point, or by limiting the *t* range

Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 27

Shadow rounding errors

• Don't fall victim to one of the classic blunders:



- What's going on?
 - hint: at what t does the shadow ray intersect the surface you're shading?

Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 26

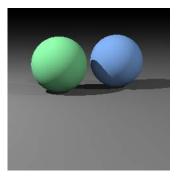
Multiple lights

- · Important to fill in black shadows
- Just loop over lights, add contributions
- · Ambient shading
 - black shadows are not really right
 - one solution: dim light at camera
 - alternative: all surface receive a bit more light
 - just add a constant "ambient" color to the shading...

Cornell CS465 Fall 2007 • Lecture 3

Image so far

```
shade(ray, point, normal, lights) {
  result = ambient;
  for light in lights {
     if (shadow ray not blocked) {
        result += shading contribution;
     }
  }
  return result;
}
```



Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 29

Architectural practicalities

- Return values
 - surface intersection tends to want to return multiple values
 - t, surface or shader, normal vector, maybe surface point
 - in many programming languages (e.g. Java) this is a pain
 - typical solution: an intersection record
 - · a class with fields for all these things
 - · keep track of the intersection record for the closest intersection
 - be careful of accidental aliasing (which is very easy if you're new to Java)
- Efficiency
 - in Java the (or, a) key to being fast is to minimize creation of objects
 - what objects are created for every ray? try to find a place for them where you can reuse them.
 - Shadow rays can be cheaper (any intersection will do, don't need closest)
 - but: "Get it Right, Then Make it Fast"

Cornell CS465 Fall 2007 • Lecture 3

© 2007 Doug James • 31

Ray tracer architecture 101

- · You want a class called Ray
 - point and direction; evaluate(t)
 - possible: tMin, tMax
- Some things can be intersected with rays
 - individual surfaces
 - the whole scene
 - often need to be able to limit the range (e.g. shadow rays)
- Once you have the visible intersection, compute the color
 - this is an object that's associated with the object you hit
 - its job is to compute the color

Cornell CS465 Fall 2007 • Lecture 3