
CS 465 Program 5: Ray II

out: Thursday 16 November 2006
due: Friday 1 December 2006

1 Introduction

In the first ray tracing assignment you built a simple ray tracer that handled just the basics. In this
assignment you will build a more capable ray tracer that can handle more substantial models and
can produce much more interesting renderings.

This assignment is rather open-ended relative to the earlier ones. The framework is the solution to
the first ray tracing assignment. If you are happy with your Ray I solution you are encouraged to use
it; otherwise you can start from our solution. You are free to design and implement the extensions
in any way you like.

2 Requirements

Your ray tracer will read files in a standard file format and output PNG images (like the first ray
tracer). It has to support the basic features given below, plus an extension (or more for extra credit)
as described below.

2.1 Basic features

Your ray tracer must implement the following features beyond what the first ray tracer did:

1. An acceleration structure. Your program must be capable of rendering large models (up
to several hundred thousand triangles) with basic settings in a few minutes. Achieving this
requires a spatial data structure that makes the time to trace a ray sublinear in the number
of objects. We recommend implementing an axis-aligned bounding box hierarchy (AABB),
which is a simple and effective way of speeding up ray traversal.

2. Recursive ray tracing. You must implement two new shaders: one (“Glass”) that simulates
an interface between air and a dielectric material, and another (“Glazed”) that acts like a thin
layer of dielectric over another material. The glass shader should compute the directions of
the reflected and refracted rays using Snell’s law, compute the reflection factor using Fresnel’s
formulas, then trace reflected and refracted rays recursively and combine the results using the
reflection factor. It needs to work for rays coming from both sides of the surface; you can
always tell which side is air because the air is on the outside, the side toward which the normal

1



CS 465—Ray II 2

points. The glazed shader should compute reflections in the same way as the glass shader, but
rather than tracing a refracted ray it should just call another shader (which represents the
substrate below the glaze) and treat its result as the color of the refracted ray.

A shader that uses recursively computed rays means that your renderer will generate a tree
of rays, which needs to be pruned to keep the program from becoming too slow. In addition
to a maximum-depth cutoff, you should also implement a maximum-attenuation cutoff by
keeping track of how much a given ray will contribute to the image (i.e. what is the factor
it is being multiplied by before it is added to the image). When that factor drops below a
user-determined threshold, you should terminate recursion.

Transparent objects should not cast black shadows; they should attenuate the illumination but
not block it entirely. You should work out a way of computing the attenuation that produces
shadows with an appearance you like.

In the input file the glass shader is specified just by its index of refraction, through a parameter
namedrefractiveIndex :

<shader type="Glass">
<refractiveIndex>1.5</refractiveIndex>

</shader>

The glazed material is the same but also expects to see another shader for its substrate:

<shader type="Glazed">
<refractiveIndex>1.5</refractiveIndex>
<substrate type="Lambertian">

<diffuseColor>0.4 0.5 0.8</diffuseColor >
</substrate>

</shader >

3. Transformations. Your ray tracer must support transformations using an approach similar to
the modeler. You should introduce a new type of surface, “Group”, that contains a transforma-
tion and a list of surfaces. The transformation is specified as a sequence of rotations, scales,
and translations, which are combined in the order given to define the transformation that is
applied to all members of the group. The transformation that appears first in the file is on the
outside. All transformations apply to all objects, even if the transformations and objects are
intermixed in the file (it makes most sense to put the transformations first, then the objects).
Transformations are described in exactly the same way as in the modeler: translations and
scales have components forx, y, andz; a rotation is actually a sequence of three rotations
about the three coordinate axes, with thex rotation on the inside and thez rotation on the
outside.

The file format can be defined by example. For instance, if the a transformation in the mod-
eling assignment was given as “T: 1 2 3; R: 40 50 60; S: 0.7 0.8 0.9,” the same effect can be
specified in the ray tracer as follows:

<surface type="Group">
<translate>1.0 2.0 3.0</translate>
<rotate>40 50 60</rotate>
<scale>0.7 0.8 0.9</rotate>



CS 465—Ray II 3

<surface type="Sphere">
<!-- ... -->

</surface>
<!-- more surfaces... -->

</surface>

4. Triangle meshes. In order to allow for more interesting geometry than spheres and boxes,
you must support triangle meshes. Since meshes can be quite large, it is not practical to
process them using the parser, so they are stored in a simple text format in separate files.
These files contain standard indexed triangle meshes, with optional texture coordinates and
surface normals at the vertices. If the mesh contains vertex normals, you should shade it with
interpolated normals; otherwise you should shade it with the triangles’ geometric normals.

The input format for a mesh is just a filename reference:

<surface type="Mesh">
<shader><!-- ... --></shader>
<data>filename.msh</data>

</surface>

The mesh file contains text as follows, one word or number per line:

• The number of vertices in the mesh.

• The number of triangles in the mesh.

• The keywordvertices

• The 3D coordinates of the vertices, ordered by vertex number:x0, y0, z0, x1, y1, z1, . . ..

• The keywordtriangles

• Three integer vertex indices per triangle.

• (Optional) The keywordtexcoords , followed byu andv coordinates for each vertex.

• (Optional) The keywordnormals , followed byx, y, andz components of a normal
vector for each vertex.

You can find code that reads meshes in this format in theMesh class of the Model assignment
framework.

5. Antialiasing. You must support antialiasing by regular supersampling. The number of sam-
ples is specified by thesamples property of theScene class. For example, the following
input specifies a 640 by 480 pixel image rendered with a 3x3 grid of subpixel samples for
each pixel.

<scene>
<camera>

<!-- ... -->
</camera>

<samples>9</samples>

</scene>

You are free to round the number of samples to a convenient number (for example, to the
nearest perfect square).



CS 465—Ray II 4

2.2 Extension features

Your ray tracer must also implement one extension from the following list.

1. Cube-mapped backgrounds. A ray tracer need not return black when rays do not hit any
objects. Commonly, background images are supplied that cover a large cube surrounding the
scene. The directon of rays that do not intersect objects are used to as indices into these images
and the color of the image in the rays direction is returned rather than black. The techinique is
commonly called cube-mapping. To implement cube-mapping in you ray tracer you will need
to extend theScene class to contain an image used as the cube map background. You will
also need to write code that maps ray directions into cube-map pixels. A short introduction to
cube-maps can be found here
http://panda3d.org/wiki/index.php/Cube_Maps and many actual maps can
be found herehttp://www.debevec.org/Probes/ .

2. Spotlights. Extend your point light source to be a circular spotlight. A spotlight has a direc-
tion, a beam angleθb, and a falloff angleθf , in addition to the usual position and intensity.
For directions that make an angle less thanθb with the spotlight’s direction, it produces the
same intensity as a regular point light. For directions that are more than an angle ofθb + θf

from the spot direction, it produces no illumination. In the falloff zone it drops off smoothly
according to aC1 function of angle.

In the input file an overhead spotlight with a full beam width of 30 degrees might look like
this:

<light type="Spot">
<position>0 10 0</position>
<intensity>1 1 1</intensity>
<direction>0 -1 0</direction>
<beam>15</beam>
<falloff>5</falloff>

</light>

3. Adaptive image plane sampling. Rather than using a fixed number of samples per pixel, use
an adaptive scheme. Start by tracing a grid of rays that are a few pixels (4 is a good starting
number) apart. Then for each square of four pixels trace a ray in the center. If the ray is close
to the average of the four neighbors, bilinearly interpolate the remaining pixels in the block.
If not, recursively apply the same procedure to smaller blocks.

You should use this same procedure to cast as many samples as necessary for antialiasing, up
to a predetermined maximum recursion depth.

4. Propose your own. You can propose your own extension based on something you heard in
lecture, read in the book, or learned about somewhere else. Doing this requires a little extra
work to document the extension and come up with a good test case. If you want to do your
own extension, email your proposal to the course staff list before the Thanksgiving break.



CS 465—Ray II 5

3 Implementation hints

3.1 Axis-aligned bounding boxes

To implement an AABB you could take the following approach:

1. Create a class that defines an axis aligned bounding box. Design the class as you feel appro-
priate, but you will likely, at minimum, need methods to: determine if the box intersects a
ray, determine if the box intersects another box, grow the box to include a point, and grow
the box to include another box. You will also need to extend theSurface class to include a
method that can grow a bounding box to include each surface type.

2. Design a class to represent a node in the heirarchy. Each node should have a pointer to a
bounding box object, pointers to two children and a list of pointers to objects contained in the
box.

3. Implement a method of building the heirarchy. The most straight forward approach is to
create an AABB that encloses all the objects in the scene and then create a bounding volume
node for this box and that includes all objects. Then recursively split this box and its children
until the number of objects in each node is less than a constant (usually around 10). To split a
node, choose an axis to split along, sort all the objects in the box along the axis and put each
half in each of the children. The sort will require that you implement a method of sorting
Surface s. A good method is to sort by an approximation of their center: the center for
Spheres and the average of the vertices for triangles.

4. Implement a method of traversing the heirarchy and finding the first object intersecting a ray.
The method is described both in the lecture notes and in Shirley Chapter 10.

3.2 File format

This assignment will require you to make several extentions to the existing code. Of course, you
will need to be able to make test cases that can exercise the new features you will be adding. The
framework’sParser class is designed to support this type of extension without change, but it
requires that you implement the new features in a certain way. The requirements are:

1. Any class that will be instantiated by the Parser must implement a public constructor that
takes no arguments.

2. Any class described by a block of xml that includes sub-tags must have public methods called
either setXXX() or addXXX where XXX is the exact name of the sub-tag used in the
description. These methods must take exactly one argument. The data will be parsed as if
it is the same type as the argument. TheParser can correctly parse all primitive types,
String s,Color s and sub-classes ofTuple3 .

For example, if you wanted the following input to parse correctly:

<foo>
<bar>



CS 465—Ray II 6

<cat>Lucky</cat>
</bar>

</foo>

You would need to have classes with the minimum definitions:

class Foo {
public Foo() {}
public setBar(Bar inBar) {

//Do something with inBar
}

}

class Bar {
public Bar() {}
public setCat(String inName) {

//Do something with inName
}

}

Finally, the most common case is that you will be adding new shaders, surfaces, or lights. In this
case, in addition to the requirements above, the new classes should extendShader , Surface , or
Light . You can then instantiate the correct class using thetype argument. For example:

<shader type="MyShader">
</shader>

is the correct way to specify an instance of a new shader class namedMyShader .

You can find comments with a more detailed description of the Parser inParser.java .

4 Handing in

When you hand in your ray tracer, in addition to the code you need to hand in input files that
demonstrate its abilities. A fraction of the grade for this assignment will be set aside for the quality
of your test cases: do they test your features well, so that we can tell for sure that they work, and
do the images just look nice. None of the test images should take more than about 10 minutes to
compute on a recent PC (such as the ones in the lab). You are required to submit at least 2 test input
files for each of the items you implement above.

Also hand in a text file (a page or so) with simple user documentation that explains how to use
your program. For example, we need to know how to set any options or parameters that are not set
through the input file, and we need to know about any extra extensions you made to the file format.

Finally, hand in one image, rendered at high quality and at high resolution (1280 pixels across)
that shows off the best your program can do. Make the model interesting, and make the image
aesthetically pleasing. We will award 10 extra credit points to the best image (on combined technical
and aesthetic grounds) we receive, and 5 points to each of two runners-up.


