
CS465 Notes: Simple ray-triangle intersection

Steve Marschner
Cornell University

October 12, 2003

Intersecting a ray with a sphere is easy because the sphere can be defined by a single implicit
equation. Intersecting a ray with a triangle is a little more complex because a triangle needs a
slightly more complex definition. The method given by Shirley is efficient and elegant, and it’s
what you would probably use in a “real” ray tracer because it computes some values as a side effect
that you need for various more advanced features. However, it’s not conceptually the simplest way
to do it. Here I present an alternate and more straightforward approach.

A triangle is a subset of a plane—the region of the plane defined by its three vertices that is
bounded by its three edges. There are two steps to ray-triangle intersection:

1. Intersect the ray with the triangle’s plane

2. Check whether the intersection is inside the triangle.

We’ll assume we are given the 3D positions of three vertices of the triangle as three vectorsp0, p1,
andp2.

Ray-plane intersection is easy using the implicit equation for the plane; we discussed this before
in the ray tracing lecture. For this ray and plane:

the solution is

t = −(o− p) · n
d · n

x = o + td.

For a plane defined by the three vertices, we can just use any vertex, sayp0, as the point on the
plane, and we can get the normal from the cross product of two edges:

1



n = (p1 − p0)× (p2 − p0).

Note that the order is important, to make sure the normal points towards the front of the triangle
(the side from which the vertices are ordered counterclockwise).

Now that we can find the intersection of the point with the triangle’s plane, we need to find out
whether that point is inside the triangle or not:

We can answer this question by thinking of the triangle as the intersection of three half-spaces. Each
edge of the triangle defines a line, and a point is inside the triangle if it’s on the correct side of all
three lines (Figure 1).

Given a pointp and a vectorv that define a line, let’s arbitrarily define that the half of the plane
on your left, as you travel along the line in the direction of the vector, is the “inside” and the half
on your right is the “outside.” We can determine whether a particular pointx is inside or outside by
checking whether the vectorx− p is counterclockwise or clockwise fromv:

2



Figure 1: A triangle is the intersection of three half-spaces.

Using this definition, the triangle is the region that is on the left of the line defined byp0 andp1−p0,
on the left of the line defined byp1 andp2 − p1, and also on the left of the line defined byp2 and
p0−p2. (That is, it’s to the left of the line defined by each vertex and the vector to the next vertex.)
If it’s on the outside of any of the edges it’s outside the triangle:

3



Note that in this definition it’s important that the three vertices are numbered in counterclockwise
order; otherwise no point can ever be in the triangle.

Since the three vertices and the intersection point are all in 3D space, the easiest way to compute
these clockwise/counterclockwise checks is using the cross product. We already defined a surface
normaln that points toward the “front”—that is, the side from which the vertices are ordered coun-
terclockwise. Given two arbitrary vectorsv andw in the triangle’s plane, we know thatv × w is
perpendicular to that plane, and the right hand rule tells us that the cross product points toward the
front if and only if w is counterclockwise fromv (when viewed from the front). This means we
can tell clockwise from counterclockwise by checking whether the cross product points in the same
direction as the normal.

4



Two parallel vectors point in the same direction if and only if their dot product is positive, so the
point-in-triangle test reduces to

(p1 − p0)× (x− p0) · n ≥ 0
(p2 − p1)× (x− p1) · n ≥ 0
(p0 − p2)× (x− p2) · n ≥ 0

5


