
CS 465 Homework 2b

out: Monday 17 November 2003
due: Wednesday 26 September 2003

In this assignment, you will implement several types of shading in a simple software graph-
ics pipeline. In terms of the graphics pipeline stages we discussed in lecture, we are giving
you the application and rasterizer stages of the pipeline, and your job is to implement the
vertex and fragment processing stages to achieve several different kinds of shading. This is
very much like the task you are faced with when using a modern programmable graphics
processor such as the ones that power current high-end PC graphics boards.

This assignment is to be done individually.

Principle of operation

As discussed in lecture, thegraphics pipelineis a sequence of processing stages that effi-
ciently transforms a set of 3Dprimitivesinto a shaded rendering from a particular camera.
The major stages of the pipeline are:

• Application: holds the scene being rendered in some appropriate data structure, and
send a series of primitives (only triangles, in our case) to the pipeline for rendering.

• Vertex processing: transforms the primitives into screen space, optionally doing other
processing, such as lighting, along the way. In our pipeline this stage is known as
“triangle processing” because the only primitive type is separate triangles.

• Rasterization: takes the screen-space triangles resulting from vertex processing and
generates afragmentfor every pixel that’s covered by each triangle. Also interpolates
parameter values, such as colors, normals, and texture coordinates, given by the ver-
tex processing stage to create smoothly varying parameter values for the fragments.
Depending on the design of the rasterizer, it mayclip the primitives to the view vol-
ume. Our simple rasterizer cannot handle triangles that cross the view plane, so in
our pipeline the rasterizer does near-plane clipping.

• Fragment processing: processes the fragments to determine the final color for each

1



CS 465 Homework 5 2

one and to doz buffering for hidden surface removal. Writes the results to theframe-
buffer.

• Display: displays the contents of the framebuffer where the user can see them.

For each of the types of rendering detailed in the requirements below, you need to im-
plement a triangle processor and a fragment processor by implementing subclasses of the
triangle processor and fragment processor base classes. The triangle processor takes as in-
put three vertices with colors, normals, and texture coordinates, and it hands the triangle
off to the rasterizer in the form of three screen-space vertices and threeattribute arraysthat
contain the parameters to be interpolated and given to the fragment processor. The fragment
processor takes as input an integer(x, y) pixel coordinate and an attribute array, and after
doing the appropriate computations it sets pixels in the framebuffer as appropriate.

The attribute arrays are the means of communication between the vertex and fragment pro-
grams, and the two stages need to agree on how many attributes there are and what they
mean. When the user chooses the two programs, the framework enforces agreement on
the number of attributes, but the semantics are up to you. Note that our rasterizer does
perspective-correct interpolation of all attributes.

The pipeline contains three transformation matrices: the Modelview matrix, which is the
product of the modeling and viewing matrices we discussed in lecture, the Projection ma-
trix, and the Viewport matrix. You’ll use the Modelview matrix to transform the input
coordinates (object space) to eye-space coordinates. An important feature of the pipeline is
that it only allows rotations and translations in the Modelview matrix. This means that you
can transform normals using the same matrix you use to transform vectors, which is a nice
convenience.

Our software graphics pipeline is designed for simplicity rather than efficiency, though it
does run acceptably fast for small scenes like the ones provided by the framework. The
time to render a frame is heavily dominated by fragment processing (which is typical of
software pipelines), so when you implement your fragment programs make every statement
count! In particular, it would be a bad idea to allocate objects in the fragment program or
to use unnecessary calls to the math library.

Requirements

Implement vertex and fragment programs that provide the following kinds of shading, all
with hidden surface removal. The framework comes with an implementation of constant
shading with noz-buffer, just to get you started.

1. Constant shading: each triangle is rendered entirely with the color of its first vertex,
and the other colors, the normal, and the texture coordinates are ignored.



CS 465 Homework 5 3

2. Textured constant shading: each triangle is rendered with the color of its first vertex
multiplied by the current texture. The texture coordinates are used to look up in the
texture. The other colors and the normals are ignored.

3. Flat shading: each triangle is rendered with a single color computed using the Blinn-
Phong lighting model with the color and normal of the first vertex. The other colors
and normals and the texture coordinates are ignored.

4. Gouraud shading: each triangle is rendered with colors interpolated from colors com-
puted at the vertices. The color at each vertex is computed using the Blinn-Phong
lighting model with the color and normal of that vertex. The texture coordinates are
ignored.

5. Phong shading: each triangle is rendered with colors computed using the Blinn-
Phong lighting model with the color and normal interpolated from the colors and
normals of the vertices. The texture coordinates are ignored.

6. Textured Phong shading: each triangle is rendered with colors computed using the
Blinn-Phong lighting model with the color from the current texture map and the nor-
mal interpolated from the colors and normals of the vertices. The vertex colors are
ignored (unlike in the texture-modulated constant shading).

In all cases where you are computing lighting, the lighting model is the same Blinn-Phong
model as used in the ray tracer. The diffuse and ambient colors are equal, and they come
from the vertex color or texture map. The specular color is a constant. There is a single
directional light source, and you should use the infinite viewer approximation1.

Framework code

The framework is a simple graphics pipeline that is modeled on the way hardware graphics
pipelines work (rather than being an example of the most efficient way to write a software
pipeline). The classes that are most important for this assignment are:

1. Pipeline coordinates the operation of the pipeline and provides the interface to the
Scene classes that draw the test scenes. It contains references to all the other pieces
of the pipeline: the triangle processor, the rasterizer, the fragment processor, and the
framebuffer. It is here that you will find the current transformations and the lighting
parameters for the Phong model.

2. TriangleProcessor holds the code to do triangle (vertex) processing. The main
function is triangle , which is called to render a triangle. It takes four arrays as
arguments, each of which should be three elements long: the three vertex positions,

1This means that in eye coordinates the direction toward the eye is always+z .



CS 465 Homework 5 4

the vertex colors, the vertex normals, and the texture coordinates. Not every triangle
processor will use all the arguments (in fact, none will use every single argument).

3. Rasterizer contains the algorithms for clipping and rasterization. Theraster-
ize method is the entry point, which is called by the triangle processor for each
triangle. It clips the triangle against the near plane, which results in zero, one, or two
triangles that need to be rasterized. For each triangle it callsrasterizeClipped ,
which does the actual work of rasterization. For every fragment generated, the ras-
terizer calls thefragment method of the fragment processor. You’ll need to under-
stand the rasterization code for the discussion questions, but you can safely ignore
the clipping code, which looks hairy (although it really is straightforward—it just has
a lot of cases).

Note: The rasterizer adds thez′ (or screen-spacez) depth as the first parameter in the
parameter array it hands to the fragment processor. This means that all the other at-
tributes are shifted by one place. For instance,ConstColorTP puts the RGB color
into attributes 0, 1, and 2, butTrivialColorFP has to take them from attributes
1, 2, and 3 because thez′ value is now attribute 0.

4. FragmentProcessor holds the code for fragment processing. The main function
is fragment , which is called for every fragment (and therefore needs to be effi-
cient). The arguments tofragment are the coordinates of the pixel it addresses and
the attribute values, which are interpolated from the corresponding values supplied
by the triangle processor.

5. FrameBuffer is a simple class to store the final image. It stores the color channels
as a byte array (three bytes per pixel) and thez buffer as a float array (one float per
pixel). The fragment processor can read thez buffer using thegetZ method, and it
can write to all the channels using theset method. The image actually gets on the
screen by being drawn inPipeView.display .

You’ll find that there are subclasses ofTriangleProcessor andFragmentProces-
sor already there. To let you know what we have in mind, here are the combinations of
triangle and fragment processor we expect you to use to implement each shading mode:

• Constant shading:ConstColorTP andColorZBufferFP

• Textured constant shading:TexturedTP andTexturedFP

• Flat shading:FlatShadedTP andColorZBufferFP

• Gouraud shading:SmoothShadedTP andColorZBufferFP

• Phong shading:FragmentShadedTP andPhongShadedFP

• Textured Phong shading:TexturedFragmentShadedTP andTexturedPhongFP



CS 465 Homework 5 5

The classesMainFrame , GLView , andPipeView are concerned with the user interface.
The program comes up with a single window that shows you two viewports looking at the
same scene. The left one is renderd by our software pipeline with your triangle and fragment
processing code, and the one on the right is rendered by OpenGL using your PC’s graphics
hardware (or a software emulator in the OS if the hardware is absent or mis-configured).
There are several pop-up menus across the bottom. The first two let you choose the active
triangle and fragment processor. The third one lets you choose between several simple test
scenes; the fourth one lets you choose among several textures; and the last one lets you
choose between two ways to control the camera.

The OpenGL viewport configures itself based on the classes that are selected in the first two
menus. Its behavior closely approximates what you should see in the software window (but
only for valid combinations of triangle and fragment processors). Note that, since OpenGL
doesn’t easily support Phong shading, the renderings will not match when you select the
Phong shading modes – your highlight will look much nicer. Even for the valid modes the
two images will not be pixel-for-pixel identical, because the OpenGL standard purposely
leaves many implementation details unspecified.

The classesCamera, Geometry , andScene and its subclasses make up the application
code that feeds triangles into the pipeline. The different scenes are:

• “Balls”: a scene consisting of two spheres, represented by two different numbers
of triangles. Their vertices share normals, so this scene exercises smooth shading
(all the other scenes have flat faces). The texture coordinates are just thex andy
coordinates of the vertex position. Most useful for testing the Flat, Gouraud, and two
Phong shading modes.

• “Cube”: a scene consisting of a cube with faces of different colors. This scene is
most useful for testing the two texture mapping modes.

• “ship1.msh” and “ship2.msh”: triangle meshes that are read in from files. They have
texture coordinates that also come from the files, and each model is designed to look
right with the correspondingly named texture selected. They are useful for testing flat
shading and the textured modes.

• “Maze”: a randomly generated maze. This is the one model that’s meant to be used
with the “Flythrough” camera mode. The shaded modes don’t produce very nice
looking results with this scene the way the lights are set up, so this is best viewed
with the textured constant shading mode.

To control the camera in the “Orbit Camera” mode, click and drag in the window to rotate
the model, and shift-click and drag to move the camera closer or farther away. In the
“Flythrough” mode, click and drag to rotate the camera in place, and shift-click and hold to
move forward. You can steer while moving forward by moving the mouse around.



CS 465 Homework 5 6

The classesMatrix4f and Texture are utility classes that you’ll need to use.Ma-
trix4f (not to be confused withjavax.vecmath.Matrix4f ) is a very simple 4x4
matrix class. It does not even have inverse or transpose operations, because we don’t need
them for this assignment. You will only need to use the*Multiply and*Compose oper-
ations.Texture is the (extremely simple) class that reads in a texture image and stores it
in an array. To look up the color at a particular texture coordinate, use thesample method,
which accepts a two-dimensional point(u, v) in the unit square[0, 1]× [0, 1].

Discussion questions

1. The code inRasterizer.rasterize is lacking in comments. Add explanatory
documentation to the code that answers the following questions.

(a) Which part of the routine is triangle setup and which part is the rasterization
loop?

(b) Where is back-face culling?

(c) Where is the perspective division?

(d) Where is perspective correction for the attributes being done? Where is the
extra pseudo-attribute that is needed for perspective correction?

(e) Does this code work by interpolating barycentric coordinates or by interpolating
edge equations?

2. The rasterizer does not do far plane clipping (it only clips to the near plane). Do you
nonetheless see objects clipped at the far plane? Why is this?

Handing in

Hand in in the usual way via CMS: a flat.zip file with the Java source files only—
particularly, no.class files. If you did extra credit, include any additional data files that
are needed. Don’t forget to include a version ofRasterizer.java with the comments
requested in the discussion questions.

Extra credit

All kinds of clever pipeline rendering tricks are accessible directly from this framework.
Some examples:

1. Reflecitons from planar surfaces using two-pass rendering. You can simulate mirror-
like reflections in a flat surface by making a rendering of your scene from a viewpoint



CS 465 Homework 5 7

reflected across the plane, reading that image back from the framebuffer, and then
using it as a texture to draw the plane from the normal viewpoint. Foley et al. has a
discussion of this technique.

2. Environment mapping. Read up on environment mapping in Shirley or Foley et al.,
then implement a fragment processor that renders a shiny metal material by generat-
ing texture coordinates to index into a cubemap. You can find some cubemap images
athttp://www.debevec.org/Probes/ .

If you do extra credit, you will probably want to extend or modify the scenes we have
provided, in order to demonstrate your extra feature.

We recommend talking to us about your proposed extra credit first so we can steer you
towards interesting mappings and make sure we agree that it would be worth extra credit.

Let us re-emphasize that, as always, extra credit is only for programs that correctly imple-
ment the basic requirements.


