
HW 4a Solutions

Andy Scukanec

October 30, 2003

1 2D Transformations

For each of the following transformations, transform the corners of the unit box
([

0
0

]
,

[
0
1

]
,

[
1
1

]
,

[
1
0

])
then express the given transformation as a concatenation of multiple elementary transformations. Finally,
express the transformation as an elementary transformation about a point or axis.

1.1 Transformation a

Simple matrix/vector multiplication will give us the results for transforming the corners of the unit box.
Remember to add a third element to the end of each vector, and set it to 1, since these are all points. The
transformed points are in the same order as they were listed above.[

1
1

]
,

[
2
1

]
,

[
2
0

]
,

[
1
0

]
By examining the upper left 2x2 tile of the matrix, we can see this is a rotation of -90◦. The right hand

column indicates that a translation of [1, 1]T is applied after the rotation.
The observation that the last corner of the unit square, [1, 0]T , is left in place leads to the suspicion that

this is just a rotation about that point. Ater some experimentation, we can see that this is indeed the case,
we are rotating -90◦about [1, 0]T .

1.2 Transformation b

The unit square transforms to: [
1
2
0

]
,

[
1
1

]
,

[
2
1

]
,

[
3
2
0

]
If we draw out what the transformed unit square looks like, we can see this tranformation is a shear along

the x-axis by 1
2 , followed by a translation of

[
1
2 , 0

]T .
Another way of looking at this, is as a shear along the line y = −1 by 1

2 .

1.3 Transformation c

The unit square transforms to: [
0
−2

]
,

[
0
−3

]
,

[
1
−3

]
,

[
1
−2

]
Again, drawing out the resultant unit square pretty clearly shows that this transformation is a reflection

across the x-axis followed by a translation of [0,−2]T .
The alternate interpretation is a flip over the line y = −1.

1



1.4 Transformation d

The unit square transforms to: [
1
1

]
,

[
3
2
5
2

]
,

[
3
3

]
,

[
5
2
3
2

]
This transformation is a little bit more complicated. Like any of the other transformations, there is more

than one way to look at this. Here is my suggestion: rotate by 45◦, scale by 2 along the y-axis, rotate by
-45◦, then finally translate by [1, 1]T .

This can also be viewed as a scale by 2 against the line defined by y + x + 2 = 0.

2 Axis-Angle Rotations

For the next three subproblems, p = [2, 0, 3]T , and v̂ = 1
5 [3, 4, 0]T

2.1 Give the matrix for transforming e1 to v̂

This involves a simple rotation about the z-axis. This is evident because the z component of both e1 and v̂
are the same. The angle θ = tan−1

(
4
3

)
≈ 53.13◦

The transformation for rotating about the z-axis by θ is:
cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 =


3
5

−4
5 0 0

4
5

3
5 0 0

0 0 1 0
0 0 0 1


2.2 Give the transformation that takes the line segment from 0 to 0 + e1 to the

line segment from p to p + v̂

First we must rotate the line segment by exactly the same matrix as we did in the problem above, then we
must translate the line segment so that it starts at p. Note that the rotation will not change the origin of
the line segment. The translation vector will simply be that of p itself. The final matrix will be:

3
5

−4
5 0 2

4
5

3
5 0 0

0 0 1 3
0 0 0 1


2.3 Give the matrix that will rotate by 30◦around the line through p in the

direction of v̂

.
First, I will spell out in english what the transformation should do, then I will write the series of matrices.

Note that the order in which I do the transformations is actually reverse from the order in which I write
them.

• Translate by −p

• Rotate about the z-axis by − tan−1
(

4
3

)
• Rotate by 30◦about the x-axis

• Rotate about the z-axis by tan−1
(

4
3

)
• Translate by p

2



The first step will shift the coordinate system so that p is at the origin. The next step will rotate v̂ down
so that it is aligned with the x-axis. The third step will do the rotation about v̂, which is now lying along
the x-axis. The fourth and fifth steps will undo the first two, so that the coordinate system is back to the
world coordinates.

1 0 0 2
0 1 0 0
0 0 1 3
0 0 0 1




3
5

−4
5 0 0

4
5

3
5 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0

√
3

2
−1
2 0

0 1
2

√
3

2 0
0 0 0 1




3
5

4
5 0 0

−4
5

3
5 0 0

0 0 1 0
0 0 0 1




1 0 0 −2
0 1 0 0
0 0 1 −3
0 0 0 1


2.4 For an arbitrary point p = [p1, p2, p3]

T and direction v̂ = [v1, v2, v3]
T , write the

axis-angle rotation as MRθM
−1 where M is

Keep in mind throughout these next two subproblems, that M should take points in frame space to world
space. This is counter intuitive at first glance, but when broken down, it makes sense. M−1 takes points
from world space, and puts them in frame space. Rθ does the rotation, then M puts the points back in
world space.

2.4.1 The product of a translation and two rotations about coordinate axes

This is similar to the method used in the the last part. The biggest difference is that we could possibly need
two rotations and will be dealing with arbitrary values. My solution will suppose that, as above, you are
moving and rotating the coordinate system so that the vector about which you are rotating becomes aligned
with the x-axis. The basic out line is the same

• Rotate about the y-axis.

• Rotate about the z-axis.

• Translate by p

The first rotation depends on v1 and v2. This is the only rotation we did in the last part, we just have
to generalize it to any vector v̂. The angle θ1 that we need to rotate by is easily computed using the atan2
function. The atan2 function takes two arguments: y and x, and computes tan−1

(
y
x

)
, but it is careful to

keep the result in the correct quadrant, and handles the cases where x = 0. θ1 = atan2 (v2, v1).
The second angle, θ2, can be computed again using atan2. This time, x =

√
v2
1 + v2

2 and y = v3, so our

equation is θ2 = −atan2
(
v3,

√
v2
1 + v2

2

)
. The whole formula for M is:

1 0 0 p1

0 1 0 p2

0 0 1 p3

0 0 0 1




cos (θ1) − sin (θ1) 0 0
sin (θ1) cos (θ1) 0 0

0 0 1 0
0 0 0 1




cos (θ2) 0 sin (θ2) 0
0 1 0 0

− sin (θ2) 0 cos (θ2) 0
0 0 0 1


2.4.2 A coordinate frame matrix constructed using cross products

Before we can construct a matrix M based on a coordinate frame about the axis and point, we need to
construct the frame. The first vector will be v̂. Then we can use shirley’s trick to construct a vector not
aligned with v̂. Take the component of v̂ with smallest magnitude and add 1 to it. Call this vector t. We
can then construct the next two basis vectors as follows:

û =
t× v̂
‖t× v̂‖

, ŵ = û× v̂

The matrix M can then be constructed by using v̂, û, and ŵ as the upper left 3x3 entries of M . The
upper right 3x1 entries will be p, so that we can shift the origin to the point p after doing the coordinate
transform. We must be careful to construct M so that v̂ is oriented along the axis about which Rθ will

3



rotate. Lets assume this axis is the y-axis. û is the x-axis then, since ê1× ê2 must equal ê3, and ŵ = û× v̂.
M then looks like: [

û v̂ ŵ p̂
0 0 0 1

]

3 Viewing Transformations

3.1 What is the viewing angle of the camera?

Imagine looking at the set up from the positive x-axis. The camera is 5 units to the left of the origin, and the
top of the box is 1 unit left and 1 unit up from the origin. The left edge of the box, the +z-axis, and the line
from the top of the box to the camera make a right triangle. The bottom edge of the right triangle is 4 units
long, and the right edge of the triangle is 1 unit long. The hypotenuse of the triangle is

√
42 + 12 =

√
17

units long. The angle measured from the bottom edge of the triangle to the hypotenuse is half of the viewing
angle. Call this angle θ. Put into equations, we have:

viewing angle = 2θ, tan(θ) =
1
4
⇒ θ = tan−1

(
1
4

)
⇒ viewing angle = 2 tan−1

(
1
4

)
≈ 28.1◦

3.2 Sketch the image

3.3 Give the viewing and projection matrices

The viewing matrix can be constructed just as in the last part of problem 2. We need the location of the
frame, and 3 basis vectors. Our basis vectors are [1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T , in that order. The order
is important - it determines which vector is used as u, which is v, and which is w. The final thing we need
to do is use the location of the camera as p. Our viewing matrix then is:

1 0 0 0
0 1 0 0
0 0 1 −5
0 0 0 1


The projection matrix is given in the book, all we need to do is intelligently choose the near and far plane

values, as well as the top, bottom, left, and right values for the viewing volume. Since the only object in our
scene is the box, we can set the near plane at the front of the box, and the far plane at the back. Since the
camera is 4 units from the front of the box, n = −4, and f = −6. Also, since we are looking through the

4



center of the window, l = −r, and t = −b. As the book mentions, the points on the near plane are left where
they are, so lets pick the four remaining values by looking at the near plane. l = −1, and b = −1. This is
because we are told the camera’s field of view is such that the front corners of the box just intersect with
the edges of the viewing volume. r = 1 then, and t = 1. Plugging these numbers in, this is our projection
matrix: 

−4 0 0 0
0 −4 0 0
0 0 5 24
0 0 1 0


Alternately, you could use the projection matrix presented in class, with d = 4, giving you a 3x4 matrix

of: −4 0 0 0
0 −4 0 0
0 0 1 0


There are a number of variants on this matrix (all of which involve multiplying it by a scalar), and all

are acceptable.

3.4 To where in the image will the corners project

The front corners will project to [1, 1]T , [1,−1]T , [−1,−1]T , and [−1, 1]T as we start at the top right and
progress clockwise. The back corners will project to 1

3 [2, 2]T , 1
3 [2,−2]T , 1

3 [−2,−2]T , and 1
3 [−2, 2]T (again

starting at the top right and progressing clockwise. This is easy to see — simply take the 3D coordinates
of the corner in world space. Transform the point by the viewing matrix, then the projection matrix. The
image coordinates of the point are specified by ximage = x

z , and yimage = y
z .

3.5 To what image coordinates will the 12 edge midpoints project?

The four edges going around the back plane of the box will be very similar, as will the front four edges, and
the edges going between the front and back. I will only do one of each of the groups. The t value listed
below the midpoint location is the parameter along which the midpoint appears. Note that since we didn’t
specify an orientation, 1− t is acceptable as well for a given t.

Back Top Edge =
1
3

[0, 2]T

t =
1
2

Front Top Edge = [0, 1]T

t =
1
2

Top Right Transition Edge =
1
5

[4, 4]T

t =
2
5

5



3.6 Do all of 3 again, but this time with the camera at [0, 0, 10]T

The methods are all the same this time. I will only write down the answers for the previous parts:

Viewing Angle = 2 cos−1
(

9√
82

)
= 2 tan−1

(
1
9

)
≈ 12.68◦

Viewing Matrix:


1 0 0 0
0 1 0 0
0 0 1 −10
0 0 0 1


Projection Matrix (l = b = −1, t = r = 1, n = −9, f = −11):

−9 0 0 0
0 −9 0 0
0 0 10 99
0 0 1 0

 or

−9 0 0 0
0 −9 0 0
0 0 1 0



Corner Projection: The front corners all project to exactly the same location. The top right back corner
projects to 1

11 [9, 9]T .

Edge Midpoint Projection: The front edge midpoints stay exactly the same. The top back edge midpoint
projects to 1

11 [0, 9]T . Both of these edge midpoints have t = 1
2 . The top right transition edge midpoint

projects to 1
10 [9, 9]T , with t = 9

20 . These edge midpoints are closer to being halfway. . . as the camera
approaches an infinite distance away, these midpoint projections will approach halfway between one endpoint
and the other.

6


