CS 465, Fall 2003, HW 3b

Andy Scukanec
October 14, 2003

1 Introduction

For this assignment, you will be writing a raytracer that will work with
basic shapes, lights, and materials. As with the other assignments, we have
developed a framework for you to use, to save you from having to muck
around with details that have little to do with graphics, like I/O. If you find
the framework cumbersome, feel free to change it. But be warned that we
will be most adept at helping you if you stick within the framework, and
if you find yourself creating completely new classes and methods because
the framework doesn’t make sense, you might want to step back and ask
yourself if you are missing something.

2 Requirements

Your ray tracer will read a scene description from an input file containing
a camera, objects, lights, and some other parameters, and it will render an
image that can be displayed and/or saved in PNG format. (The framework
handles the I/O; you just have to implement the algorithm.)

You're required to support the following types of objects in the scene:

e Surfaces, which can be spheres or triangles, and which have an asso-
ciated material.

e Three materials:

— A diffuse material, which has an ambient color k, and a diffuse
color k4 and is rendered with Lambertian shading:

L = koI, + kq(I/r*)maz(0,n - vy)

where L is the light reflected from the surface, I, is the scene’s
ambient intensity, I is the intensity of the light source, r is the
distance to the source, n is the surface normal, and vy, is the
direction toward the light source.



— A phong material, which has an ambient color k,, a diffuse color
kg, a specular color kg, and a specular exponent, and is rendered
using the Blinn-Phong model:

L = kol + kq(I/r*)maz(0,n-vy) + ks(I/r*)maz(0,n - vi))P

In addition to the above symbols, vy is the half vector.

— A glazed material, which adds a mirror reflection to another ma-
terial, known as the “base” material, of the other models:

L=Ly,ge+ Lim

where L,, is the light seen along the mirror reflection ray and
Ly ,se 1s the light reflected by the base material.

e Point light sources. These sources have just a position and an RGB
intensity, and you must support any number of lights.

e A perspective camera. Its pose is specified in the file using the eye/target /up
vector approach we discussed in class, and its field of view is specified
by giving the vertical field of view and the aspect ratio (the ratio of
the width to the height of the image).

Given a scene populated with these types of objects, your program must
be able to render an image with the following features:

e Shadows cast by the point light sources.

e Antialiased output computed using a ns by ns grid of samples within
each pixel (where ng is a parameter).

3 Framework

The framework consists of a set of classes in the default package. They make
use of a number of Java 1.4 features, so make sure you are using JDK 1.4 or
later. This homework does not use the GL4Java library (although having it
around won’t hurt anything). It does, however, use the vecmath. jar from
the previous homework. There are some things to be said about the classes
we are giving you in order to make sure you understand how to use the
framework well.

3.1 RayTracer

This class is really the starting point for the entire program. It doesn’t
do a lot, but it does tie everything together. You can pass any number
of parameters to the RayTracer class as filenames of scene descriptions to



render. The resulting images will have the same name as the scene file,
but will be in .PNG format. This image format should be easy to open
on any modern Windows/*nix OS. If you don’t give the main method any
parameters, an interactive GUI window will open. From here, you will have
the option to open a scene file and watch it render.

3.2 Light, Surface, and Material

These three classes are the abstract superclasses that you will have to sub-
class at least once. They represent just what you would expect them to in
a ray tracer and have abstract methods for doing basic operations. Each
subclass should have some additional fields, and perhaps some additional
methods. For instance, if you were creating a spot light, you would create
a Light subclass with an intensity drop-off factor, a radius, and a direction.
Keep in mind that how you declare variables in these subclasses is very
tightly tied to how the Parser deals with these objects in a scene file.

3.3 ViewingFrame

This is the main GUI class that you see if you start the program without
any parameters. No reason to worry about this class unless you’re just
interested.

3.4 IntersectionRecord

This class contains all the necessary information about a particular ray-
surface intersection. It keeps track of the location of the interesction, the
primitve that was intersected, the normal at the intersection, and the dis-
tance t along the ray where the intersection occurred. This record is to be
passed back and forth from one object to another during program execution.

3.5 Scene, Camera

The scene object is simply a collection of attributes for a particular scene.
This includes a single camera, a background color, the ambient light, and
the lists of materials, lights, and surfaces that compose the scene. The main
interest that the scene object should hold for you is in 3 important methods:

public Vector3d[][] renderAll();
public Vector3d renderPixel(int x, int y);
public Vector3d trace(Ray r);

Right now, these methods just return null ...obviously unacceptable.
More on this in the actual assignment description.



The Camera object contains information vital to actual image produc-
tion. It holds the information such as the location of the camera, the direc-
tion in which it is looking, etc.

3.6 Ray

The Ray object is a pair of Vector3d objects. One represents the origin of
the ray, and the other represents its direction. This object comes with a
particularly useful method called evaluate(double t). This evaluates the
ray at time t and returns the location at that time. This class should be used
whenever you are casting rays for reflections, intersections, etc. The other
fields inside a Ray object are two double values, tMin and tMax. These tell
you the distance over which the ray is valid. The default values for tMin and
tMax should be Ray.EPSILON and Double.POSITIVE_INFINITY respectively.

3.7 Parser

The parser class is responsible for reading in the scene description, and
creating a Scene object. This is the most complicated class you will be using
that you did not develop. The parser will be very picky about the parameters
of objects in the scene, because of how it actually creates and alters the
objects. For each object, it reads the parameter information (name, type,
and value), and writes that information directly into the object. For this
reason, you need to be very precise when you create a scene file.

Let’s go over the format of a scene file. A scene consists of a listing of
object descriptions. The template for an object description is:

<ObjectType> <Classname> [<name-of-object>]
<param-type-1> <param-name-1> <param-value-1>

<param-type-n> <param-name-n> <param-value-n>

<ObjectType> can be one of “Light”, “Surface”, “Material”, or “Cam-
era”’. Depending on what <ObjectType> is, the Parser will put the resultant
object into the a appropriate list in the Scene. <Classname> is the actual
name of the class that will be created, and that class must be a subclass of
Light if it is a Light, etc. For instance, if you are placing a sphere in your
scene, the first line of your sphere object would look like Surface Sphere.
The <Classname> value must be typed exactly and is case sensitive. The
other restriction is that the Sphere class must be a subclass of the Surface
class. The optional <name-of-object> information is used if you want to
reference this object later. This will be particularly useful for associating a
material to a surface.

All of the parameters that go with a class declaration must be on the fol-
lowing lines, with no blank lines in between! If the parse encounters a blank



line, it will assume that a new object has been started. For each of the pa-
rameters of the class, we have three parts: the type, the name, and the value.
The type must be either “int”, “double”, “String”, “ref”, or “Vector3d”.
The parameter name must be typed exactly as the parameter is declared
in the class. So if we had a material with a variable called “diffuseColor”
in its definition, then we set the diffuse color in the scene file by adding
the line Vector3d diffuseColor [1.0 0.0 0.0]. Note that Vector3d
diffusecolor [1.0 0.0 0.0] would have failed because the names are
case sensitive.

For the parser to work, any variable that will be set by the parser must be
declared as either protected, public, or package visible. Private variables will
cause exceptions to be thrown if the Parser tries to modify them. Vector3d
values need to be formatted like [<x-value> <y-value> <z-value>].

There are some settings that don’t belong to any object. The background
color, ambient light, the image height and width, and the number of samples
per pixel (only used with anti-aliasing). To set these values, simply add the
following lines and substitute in appropriate values:

BGColor <bg-color-vec>
AmbientLight <ambient-light-vec>
Height <num-pixels>

Width <num-pixels>

AASamples <samples-per-pixel>

4 Assignment

So ...now that we’ve told you what’s been done for you, its time for us to
tell you what you need to do. There are a number of things to do in order
for you to produce a full fledged working raytracer, and we have come up
with a sequence of these things that we hope will help you out. Generally,
it is difficult to write a raytracer because you don’t start seeing any output
for a very long time. By the time you do get to see output, many things
could have gone wrong. We have tried to mitigate this problem by giving
you steps that will give you output pretty early on.

4.1 Intersections and Cameras

First off, lets get your intersections working with some basic shapes. Fill
in the sphere and triangle intersection methods. Don’t forget to alter the
intersection record! Please note that triangle intersections should only be
valid on the positive side of the triangle. Which side is the positive side
depends on the order in which the vertices were specified. The normal for a
triangle should be (01 — vg) x (v3 — v).



Now, you need to fill in two methods in the Camera object. First,
write the necessary code for recalculate(). This method should recal-
culate the u, ¢, and @ vectors for the scene. Next, you need to fill in the
getRayThrough(double x, double y, double width, double height), which
as you might have guessed, returns a Ray whose origin is at the location of
the camera, and whose direction is such that it will pass through the imag-
inary point (x, y) on the pixel plane. Notice that this method takes in
doubles, meaning that it can return rays that go through fractional pixels.
This is useful for anti-aliasing and for making sure that you cast the ray
through the center of the pixel.

Last, go to the scene object’s renderAll1(), renderPixel (int x, int
y), and trace(Ray r) methods. The first method should just repeatedly
call the second method inside of a double loop. The renderPixel should
call trace after obtaining a ray from the Camera object. The trace method
should be a bit more complicated. It needs to find the closest object in the
scene, and query that object to find out what the color is at that point. For
now though, let’s just test for intersection and turn the pixel white if the
ray intersects any object at that point, and black otherwise.

If you are having a hard time getting your camera to compute the 4, U,
and @ vectors correctly, simplify your problem and make your camera work
so that it is centered at the origin and facing in the -z direction.

4.2 Shades of a Raytracer

Now, we need to see if we can’t get somewhere and actually create a scene
with textures. In the diffuse material class, and implement the shade
method. This material should have only diffuse shading available to it (note
that this includes the ambient light!), and should be fairly easy to imple-
ment. The biggest problem here will be making sure your vectors are in the
correct direction.

You will also need to implement the basic point light. Again, fill in the
empty method (getIntensity this time).

Before you start seeing any colors, you will need to modify your renderPixel (int
X, int y) code to get the material from a surface and ask it for the color.
If you get the light and material code right, you should be able to create
nice diffuse spheres and triangles.

At this point, more errors from the previous section could easily show
themselves. Things like incorrect normals etc. only become apparent now
that you have code that uses this information. Expect to spend a fair amount
of time debugging this.

Note about Colors - we are using Vector3d objects to represent color,
since the java.awt.Color class isn’t as easily modifiable. Be careful of
the specifics of the Vector3d methods though - read the documentation
carefully. In particular, be careful of scaleAdd. Don’t forget to look in the



Tuple3d class for most of the methods either! The components line up when
translating from a Vector3d to color - x = r, y = g, z = b. The range for
each of the colors should be [0.0,1.0].

4.3 The Next Steps

Now we get to the last few steps in writing your raytracer. The hardest part
has ironically been done — debugging the vector math. Now, we want you
to implement a BlinnPhong material as from the lecture slides. Just use the
formula from the Shirley book, and fill in the shade method.

At this point, it is prudent to test to see if a light is occluded or not.
Use the incoming ray information in a light’s getIntensity() method to
see if going back along the ray hits some object in the scene before it hits
the surface in the IntersectionRecord. If it does, then the current light is
occluded and should return an intensity of 0. There are actually a number
of places where you could handle light occlusions - anything reasonable is
acceptable though.

Finally, implement your GlazedMaterial class’s shade method. The
color returned by this class should be ¢ = ¢; + ¢k, where ¢; is the color
returned by the base material, ¢, is the reflected color, and k,, is the mirror
coefficient. Make sure your code handles the case when there is no base
material!

4.3.1 Anti Aliasing

Rather than just shooting a ray through the center of each pixel, make your
render pixel method shoot multiple rays through each pixel and average
them together. You should shoot scene.samplesPerPixel in each direc-
tion. So if samplesPerPixel was 3, then you would really shoot 9 rays.
Please be aware that this can really slow down the rendering process.

4.4 Testing

Don’t forget to test with as many cases as you can! Put an object behind
the camera, put lights behind objects, objects behind lights, make objects
intersect each other, etc. We will be using a large number of test cases
so make sure you test thoroughly! We will be giving you some sample
input scenes and their output, but passing the test cases we give you won’t
guarantee your code is correct!

4.5 Extra Credit

If you are brave enough, you can try handling refraction, area lights, spot-
lights, and other interesting surfaces too. If you do any of this, please submit
a scene file for each of the extra credit ideas you attempt.



4.5.1 Dielectric Materials

Make a DielectricMaterial class in a reasonable way that implements the
model of dialectric materials presented in the Shirley book.

4.5.2 New Primitives

New primitives are also worth extra credit. Some suggestions are discs, tori,
CSG object, triangle meshes, cones, cylinders, polygons, etc. Again, please
be sure to submit example test cases with your code if you attempt any of
this.

4.5.3 Area Lights/Spotlights

There are numerous resources available on how to implement area lights and
spotlights on the web. Implement (at most) one of each and include these
with your submission. Be sure to make a readme.txt somewhere giving a
link to the model that you used (book name and author, URL, etc.).

4.6 Recap

e Methods to implement:

Sphere.intersects(Ray, IntersectionRecord, Scene);
Triangle.intersects(Ray, IntersectionRecord, Scene);

Camera.recalculate();

Camera.getRayThrough(double, double, double, double);
Scene.renderAll();

Scene.renderPixel(int, int);

Scene.trace(Ray) ;

PointLight.getIntensity(IntersectionRecord, Scene);
Diffuse.shade(Ray, IntersectionRecord, Scene);
BlinnPhong.shade(Ray, IntersectionRecord, Scene);
GlazedMaterial.shade(Ray, IntersectionRecord, Scene);

Make sure you are using Vector3d functions correctly

Use System.out.println() to debug - we have implemented .toString()
in almost every class.

Make sure you differentiate between the front and back of triangles

Check the FAQ page (see below)



5 Submission

You should submit through CMS as with the other coding assignments thus
far. Zip up all of your .java files and your scene files as well. Submit them
through CMS. Do NOT submit .class files. JAR files are fine too if you
know how to create them.

6 FAQ Page

We will be maintaining a FAQ page linked from the assignment page. If
you have any questions about how to use the framework code, what we in-
tended something to mean, etc., please check the FAQ page and newsgroups
first. If your question is still not answered, then email the course staff at
cs465-staff@cs.cornell.edu. We will not be posting to notify you that we
have updated the FAQ page because we anticipate that this will happen
frequently.

If you have any questions regarding the use of lab equipment, a supported
IDE, or anything ancillary that does not directly involve this assignment,
then please talk to either Andrew Butts or Pet Chean.



