
HW 1a Solutions

Andy Scukanec

September 15, 2003

1 Image Conversion - Problem 1

1.1 How much space is occupied by I8?

(1280 ∗ 1024) pixels ∗ 8 bits
pixel

∗ 1 byte
8 bits

= 1.25 ∗ 1024 ∗ 1024 bytes

= 1.25 MB ≈ 1.3 MB

1.2 Questions about I4

1.2.1 How much memory does I4 occupy?

(1280 ∗ 1024) pixels ∗ 4 bits
pixel

∗ 1 byte
8 bits

= 1.25 ∗ 1024 ∗ 1024 ∗ .5 bytes

= .625 MB ≈ .6 MB

1.2.2 How does it look different?

It has quantization bands visible because there are only 16 gray levels.

1.2.3 What technique might improve this?

Dithering.

1.3 Questions about I16

1.3.1 How much memory does I16 occupy?

(1280 ∗ 1024) pixels ∗ 16 bits
pixel

∗ 1 byte
8 bits

= 1.25 ∗ 1024 ∗ 1024 ∗ 2 bytes

= 2.5 MB ≈ 2.5 MB

1



1.3.2 What is the maximum pixel value that will result from this
conversion?

In binary:
I8max = 111111112

I8max ∗ 256 = 11111111000000002

In base 10:
(216 − 1)− (28 − 1) = 65280

1.3.3 Give an alternate expression that will map full white to full
white.

One decent answer is:

I16[x, y] =
(216 − 1) ∗ I8[x, y]

28 − 1

which is another way of saying:

I16[x, y] = 257 ∗ I8[x, y]

Any answer that maps full white to full white, full black to full black, and
all other colors to something reasonable will be accepted. In particular, the
function must be linearly increasing so that a brighter color represented in I8
does not appear relatively darker in I16.

Some people asked about mappings that would result in a mapping of full
white to full white, but then failed to map full black to full black. These will not
receive full credit, although they will receive some partial credit. According to
the exact problem description, you could actually just map all colors to full white
and technically solve the problem, but that would render the act of expanding
from 8 bits to 16 bits useless!

2



2 Gamma Correction - Problem 2

2.1 What are the first and last five representable color
values in each scheme represented as a percentage (to
2 digits) of LM?

Given n, we must find aγ for each scheme. This will be the percentage of LM
that comes through the monitor. I is a function whose exact value is known, and
it is up to us to do something clever so that values of I are displayed correctly,
or nearly correctly, on the monitor. I does not factor directly into this problem
though, it was merely given so as to provide background information for the
student to understand the real world applicability of this problem. One obvious
problem in trying to work with I, is that it does not have some ‘first 5 values’.
This can only have any sort of meaning with a discrete variable. The only
variable like that in the problem is n. n is the integer value from 0 to 255, that
discretely approximates the value of I. How it does this differs depending on
which scheme you are using. In the table below, I have calculated out a as well
as aγ . The student only needed to worry about the aγ columns.

a(n1) =
√

n1

255
, γ = 2⇒ aγ(n1) =

n1

255

a(n2) =
n2

255
, γ = 2⇒ aγ(n2) =

n2
2

2552

Scheme 1 Scheme 2
n a aγ a aγ

0 0.0% 0.0% 0.0% 0.0%
1 6.3% .39% .39% .0015%
2 8.9% .78% .78% .0062%
3 11% 1.2% 1.2% .014%
4 13% 1.6% 1.6% .025%

251 99% 98% 98% 97%
252 99% 99% 99% 98%
253 100% 99% 99% 98%
254 100% 100% 100% 99%
255 100% 100% 100% 100%

2.2 Dark vs. Light representation

2.2.1 In each scheme, what pixel values straddle the intensities at
1% and 99%?

In order to actually ‘straddle’ an intensity, we need to find an n which lies imme-
diately below and above the appropriate intensity. This problem is essentially
the opposite of the above problem. Rather than being given an n and told to
find a percentage, we are being given a percentage (aγ) and told to find n.

3



Scheme 1:
a2 = .01, n1(a) = 255 ∗ a2 ⇒ n1 = 255 ∗ .01 = 2.55⇒ n = 2, 3

a2 = .99, n1(a) = 255 ∗ a2 ⇒ n1 = 255 ∗ .99 = 252.45⇒ n = 252, 253

Scheme 2:
a2 = .01, n2(a) = 255 ∗ a⇒ n2 = 255 ∗

√
.01⇒ n = 25, 26

a2 = .99, n2(a) = 255 ∗ a⇒ n2 = 255 ∗
√
.99⇒ n = 253, 254

2.2.2 Which scheme can distinguish smaller variations in dark shad-
ows?

Scheme 2 can. The difference between n2=25 and n2=26, the two values that
straddle 1% intensity in Scheme 2 ≈ .08%. The difference between n1=2 and
n1=3, the two values that straddle 1% in Scheme 1 ≈ .39%.

2.2.3 Which scheme can distinguish smaller variations in bright lights?

Scheme 1 has the percentage values more closely bunched up towards the 100%
end of light intensity, and can distinguish brighter lights better than Scheme 2.
The same argument in the above question can be applied here.

2.2.4 In which case can the human visual system make more use of
precision and why?

The human visual system can distinguish percentage change in light, and hence
can distinguish changes in darker lights much better. Thus, scheme two is the
better choice.

2.3 Assume we use 8-bit pixels in scheme 2. How many
bits of precision would we need in scheme 1 to match
the performance of scheme 2 at 1% intensity?

We need to add bits to scheme 1 until the difference in the two representable
intensities that straddle 1% is less than that of Scheme 2, or .08% (call this
number δ). In scheme 1 with b bits, L = n2/(2b − 1), so the difference between
subsequent values of n2 is always 1/(2b − 1). We want this difference to be less
than δ so we have:

δ >1/(2b − 1)

2b >1/δ − 1
b > log2(1/δ − 1) = log2(1/0.0008− 1) = 10.3

Therefore the number of bits must be greater than 10.3, or at least 11.

4



3 Alpha Channel - Problem 3

3.1 What will the pixel values after 1, 2, 3, 4, and 5 itera-
tions be with the an alpha channel of 0, 15, 128, 240,
and 255?

The answer to this question is a 5 by 5 grid. In my grid, I have the number
of the compositing operation going down, and the changing alpha values going
across. The only pertinent formula for this problem is c = α ∗ cf + (1− α) ∗ cb.
cf = 255 since the problem description stated that it was full white, and cb = 0
initially, since it started as full black. cb will change each iteration. The other
important thing to remember is that α ∈ [0, 1]. Thus, we have to divide α by
255 before we actually use it in the equation. Below is the table that emerges.
I rounded to the nearest to resolve fractional values, although any consistent
rounding scheme is fine.

Iteration Alpha Values
0 15 128 240 255

1 0 15 128 240 255
2 0 29 192 254 255
3 0 42 224 255 255
4 0 55 240 255 255
5 0 67 248 255 255

3.2 After a large number of compositing operations, how
will the image look different?

The circle will have hard, not soft edges. Specifically, any pixel not specified as
solid black in the alpha channel will eventually converge to be solid white.

3.3 If the alpha channel shown above is meant to approx-
imate a sharp edged opaque circle, is this behavior
appropriate?

No - if the circle is antialiased in order to approximate a hard edged circle, then
many composites will remove just such an antialiasing, and we will be left with
the same sort of visual artifacts that antialiasing attempts to remove.

5


