Intro to Splines

CS 4620 Lecture 14

Cornell CS4620 Fall 2020

Motivation: smoothness

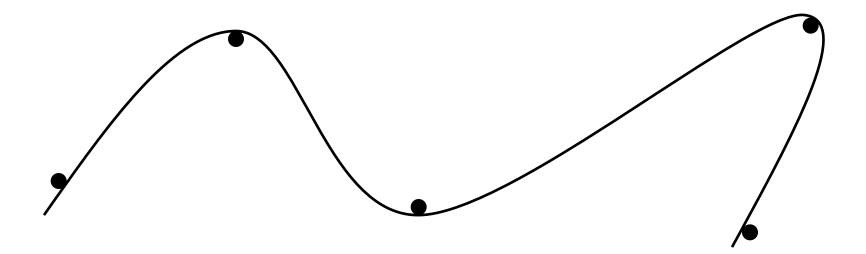
- In many applications we need smooth shapes
 - that is, without discontinuities

- So far we can make
 - things with corners (lines, triangles, squares, rectangles, ...)
 - circles, ellipses, other special shapes (only get you so far!)

[Boeing]

Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of "spline:" strip of flexible metal
 - held in place by pegs or weights to constrain shape
 - traced to produce smooth contour

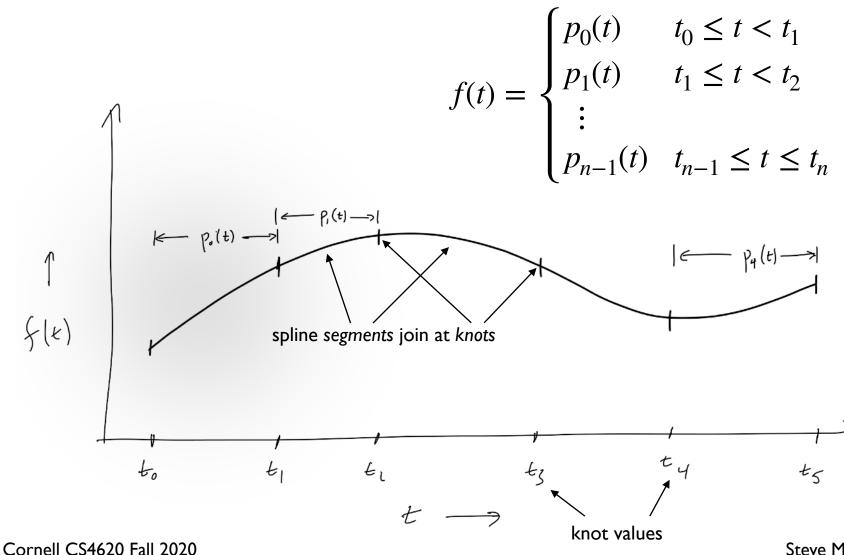


Translating into usable math

Smoothness

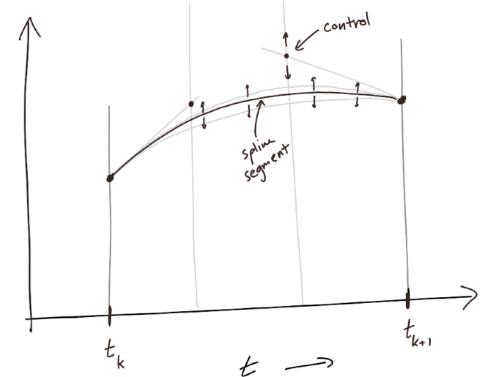
- in drafting spline, comes from physical curvature minimization
- in CG spline, comes from choosing smooth functions
 - usually low-order polynomials
- Control
 - in drafting spline, comes from fixed pegs
 - in CG spline, comes from user-specified control points

Piecewise polynomial functions



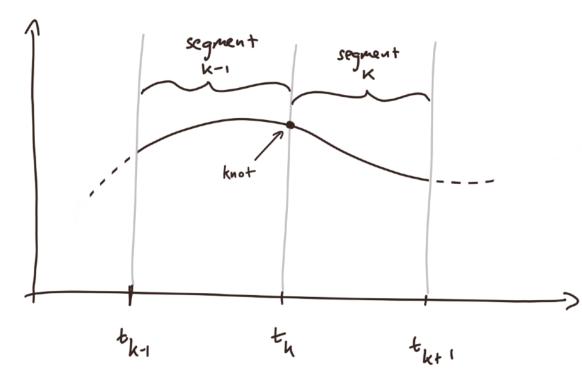
Spline segment

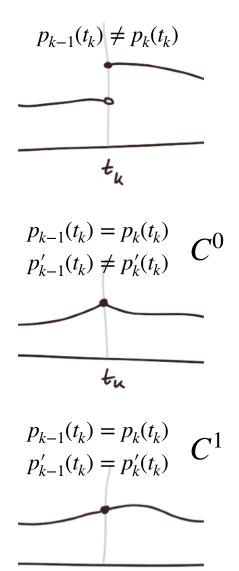
- defines the value of a spline over an interval between adjacent knot values
- is a polynomial with coefficients that depend *linearly* on one or more *controls*
- type and meaning of controls differs among types of spline



Spline continuity

- Knots are transitions between segments
 - match values for continuity (C^0)
 - match derivatives for smoothness (C^1)





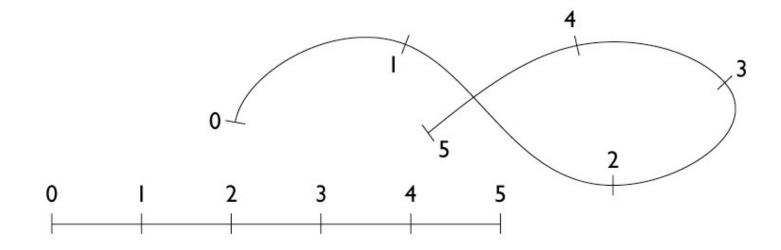
Cornell CS4620 Fall 2020

Steve Marschner • 7

• 2D spline curves are parametric curves

 $S = \{ \mathbf{f}(t) \, | \, t \in [0, N] \}$

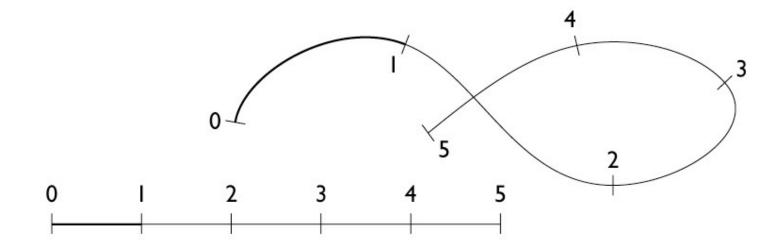
• For splines, $\mathbf{f}(t)$ is piecewise polynomial



• 2D spline curves are parametric curves

 $S = \{ \mathbf{f}(t) \, | \, t \in [0, N] \}$

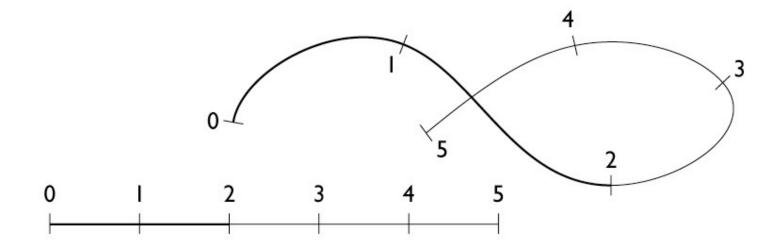
• For splines, $\mathbf{f}(t)$ is piecewise polynomial



• 2D spline curves are parametric curves

 $S = \{ \mathbf{f}(t) \, | \, t \in [0, N] \}$

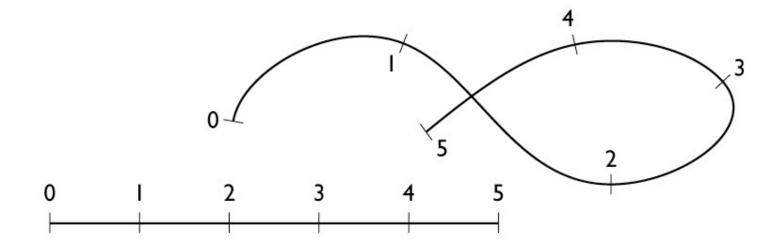
• For splines, $\mathbf{f}(t)$ is piecewise polynomial



• 2D spline curves are parametric curves

 $S = \{ \mathbf{f}(t) \, | \, t \in [0, N] \}$

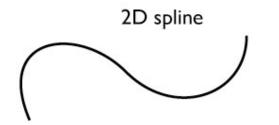
• For splines, $\mathbf{f}(t)$ is piecewise polynomial

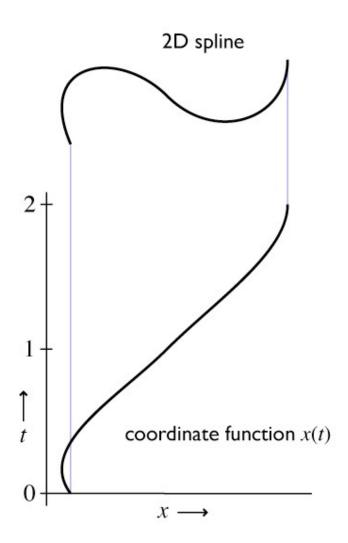


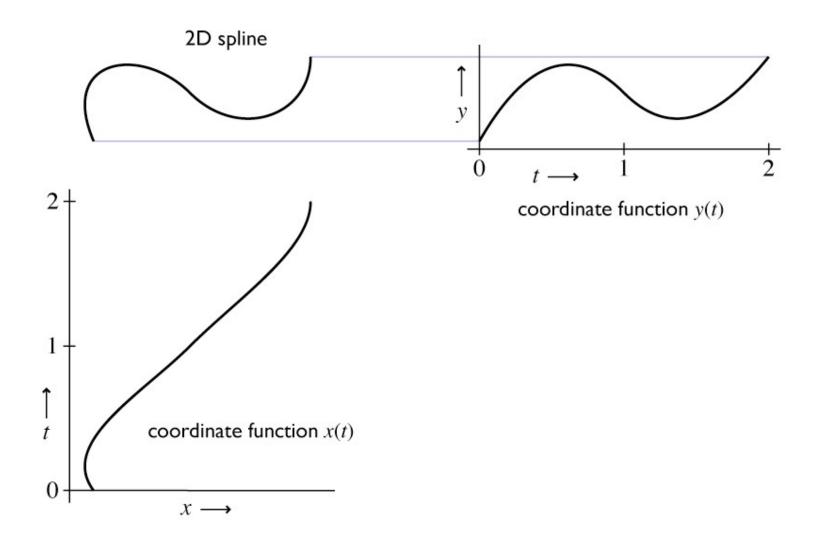
- Generally $\mathbf{f}(t)$ is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers
 - e.g., a cubic spline has the following form over [k, k + 1):

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$
$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

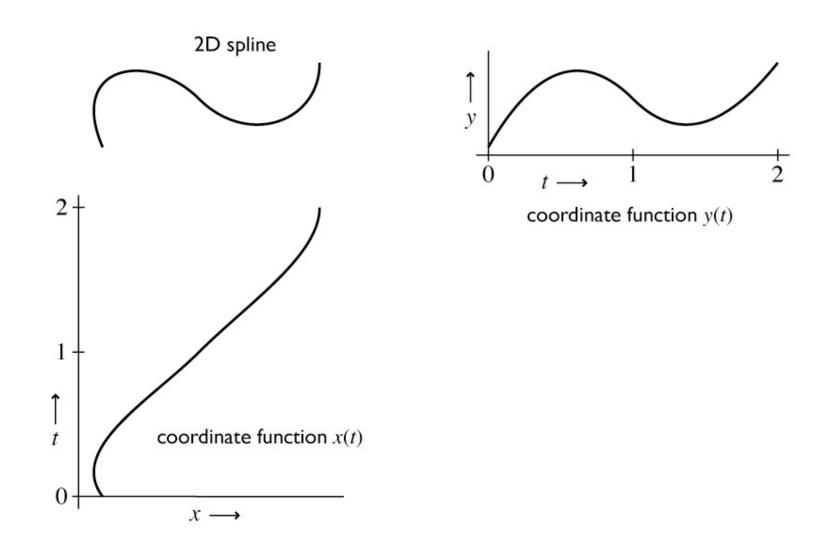
- Coefficients are different for every interval

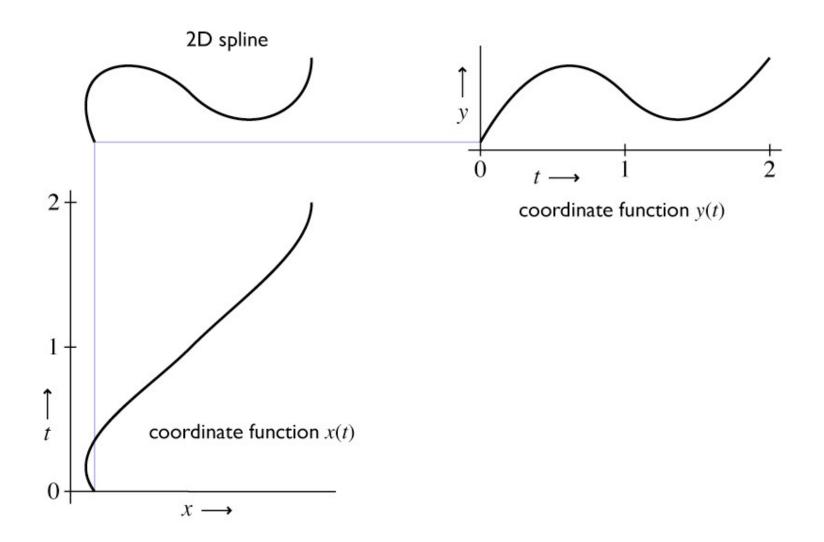




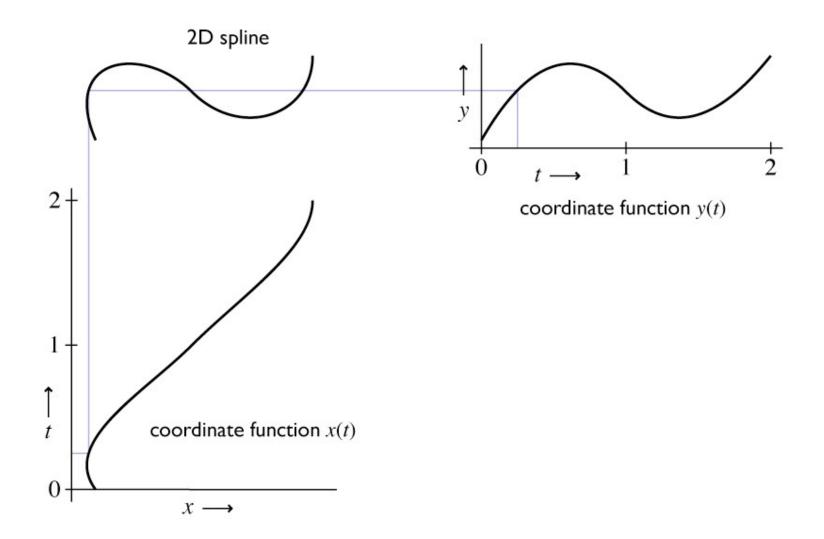


Cornell CS4620 Fall 2020



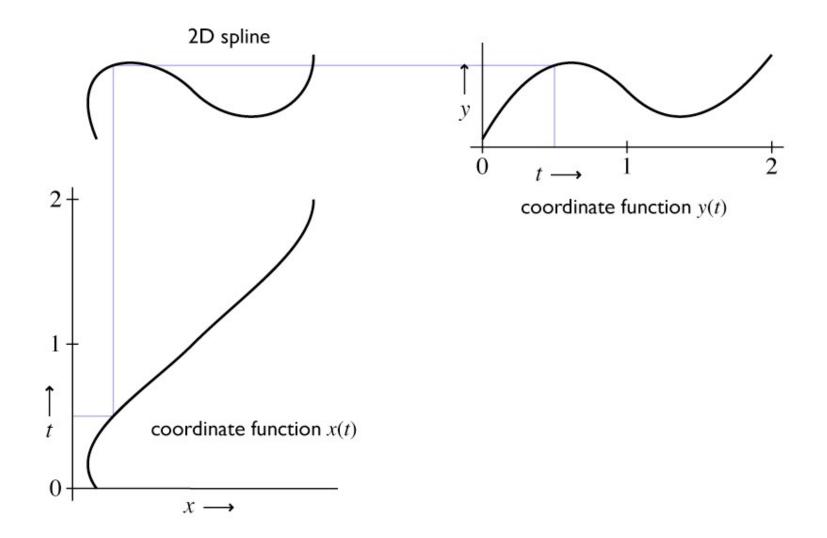


Cornell CS4620 Fall 2020

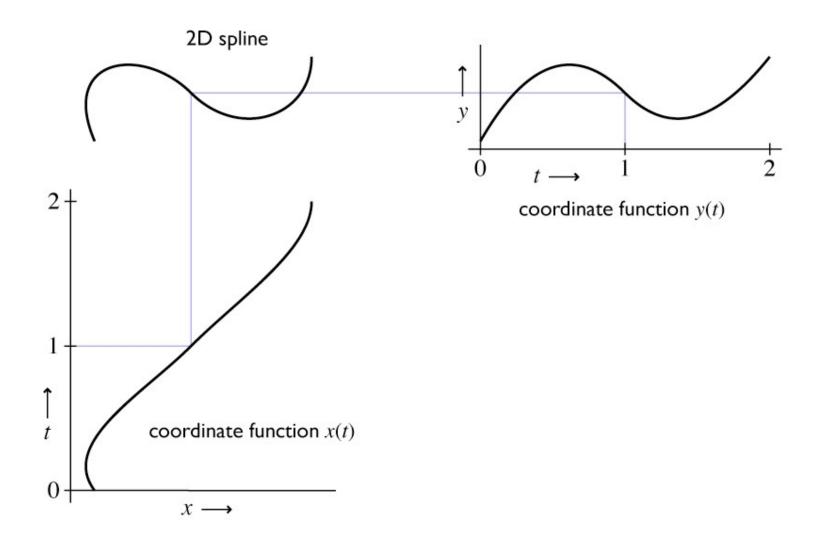


Cornell CS4620 Fall 2020

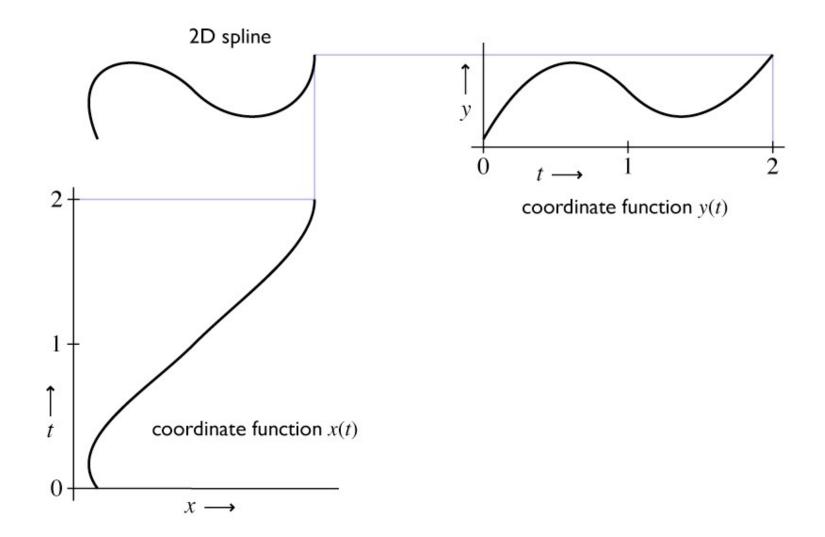
Coordinate functions



Cornell CS4620 Fall 2020

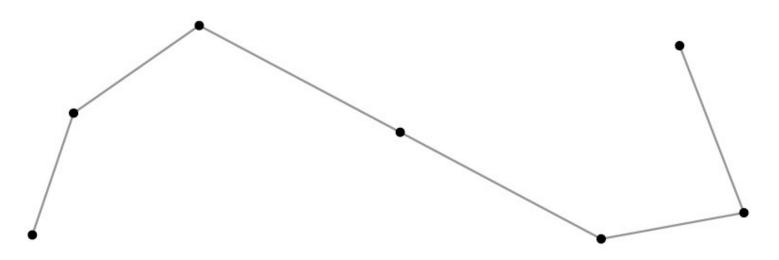


Cornell CS4620 Fall 2020



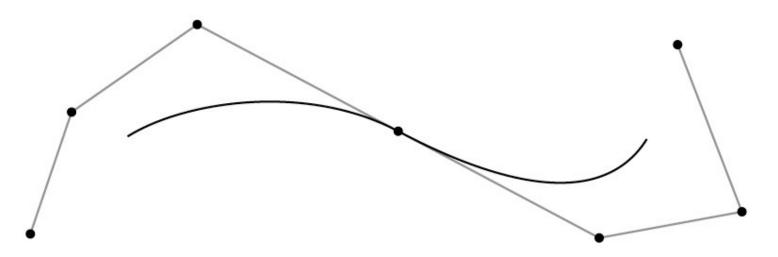
Cornell CS4620 Fall 2020

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
 - some splines interpolate only certain points (e.g. endpoints)

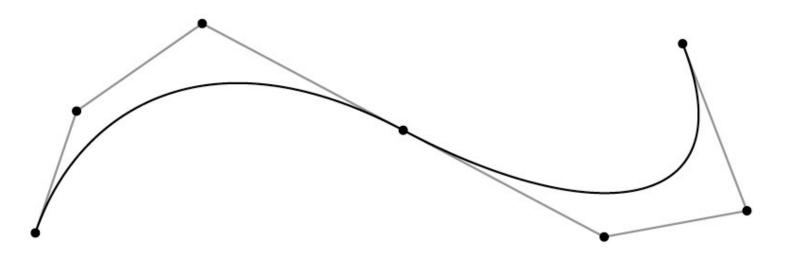


- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
 - some splines interpolate only certain points (e.g. endpoints)

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
 - some splines interpolate only certain points (e.g. endpoints)



- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
 - some splines interpolate only certain points (e.g. endpoints)



Spline curves and their controls

- Each coordinate is separate
 - the function x(t) is determined solely by the x coordinates of the control points
 - this means ID, 2D, 3D, ... curves are all really the same
- Spline curves are **linear** functions of their controls
 - moving a control point two inches to the right moves x(t) twice as far as moving it by one inch
 - x(t), for fixed t, is a linear combination (weighted sum) of the controls' x coordinates
 - $\mathbf{f}(t)$, for fixed t, is a linear combination (weighted sum) of the controls

Context

- Today we are talking about defining ID curves, living in any dimension space
 - emphasizing 2D
 - higher dimensions are no more complex (just more coords)
- Splines can be used to define objects of any dimension
 - 2D surfaces
 - 3D solids
 - ...
- Higher dimensions are built from same ID functions
 - spline patches have N^2 control points
 - joining patches together is more complicated than curves

Plan

I. Spline segments

- how to define a polynomial on [0,1]
- ... that has the properties you want
- ...and is easy to control
- 2. Spline curves
 - how to chain together lots of segments
 - ... so that the whole curve has the properties you want
 - ...and is easy to control
- 3. Refinement and evaluation
 - how to add detail to splines
 - how to approximate them with line segments

Spline Segments

Cornell CS4620 Fall 2020

A spline segment

- A polynomial function over the interval $[t_k, t_{k+1}]$
- When talking about a single segment, to keep things simple, we assume

$$k = 0; \quad t_0 = 0; \quad t_1 = 1$$

– that is, the segment lives on the interval [0,1]

Linear spline (line segment)

- Control points are the vertices
- Each segment will be a linear function
 - starts at \mathbf{p}_0 (when t = 0)
 - ends at \mathbf{p}_1 (when t = 1)
 - moves at constant speed along segment
 - both coordinate functions are linear

 $\mathbf{p}_0 = (x_0, y_0)$

 $\mathbf{p}_1 = (x_1, y_1)$

Linear interpolation

- Take one coordinate, *x*
- It is linear: x(t) = at + b
 - we want $x(0) = x_0$ and $x(1) = x_1$
 - this is achieved by $b = x_0$ and $a = x_1 x_0$

$$x(t) = (x_1 - x_0)t + x_0$$

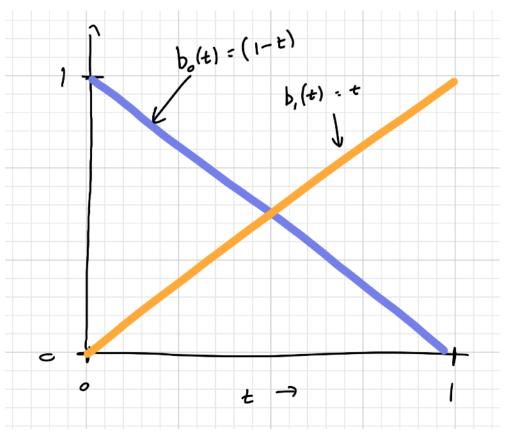
Three equivalent notions

$$\begin{aligned} x(t) &= (x_1 - x_0)t + x_0 \\ &= (1 - t)x_0 + tx_1 \\ &= x_0 b_0(t) + x_1 b_1(t) \end{aligned}$$

a linear polynomial with coefficients that are linear functions of x_0 and x_1

a linear combination of the values x_0 and x_1 with weights (1 - t) and t

a linear combination of the functions $b_0(t) = 1 - t$ and $b_1(t) = t$ with weights x_0 and x_1



Spline matrix

• A nice generalizable way of writing this is

$$x(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

Spline matrix

• A nice generalizable way of writing this is

$$x(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

monomials spline matrix controls

Spline matrix

• A nice generalizable way of writing this is

$$x(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

monomials spline
matrix controls

$$x(t) = \begin{bmatrix} t & 1 \end{bmatrix} \left(\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \right) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

group this way to see coefficients group this way to see basis functions

Linear 2D spline segment

• Vector formulation

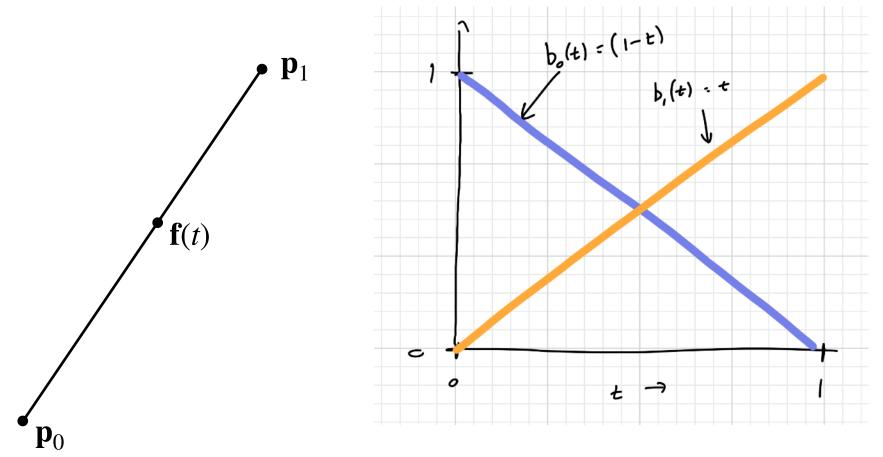
$$x(t) = (x_1 - x_0)t + x_0$$
$$y(t) = (y_1 - y_0)t + y_0$$
$$\mathbf{f}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$

• Matrix formulation

$$\mathbf{f}(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

Cornell CS4620 Fall 2020

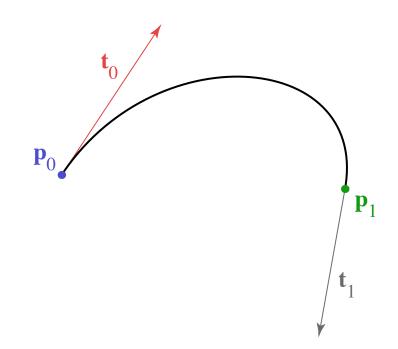
Basis function formulation

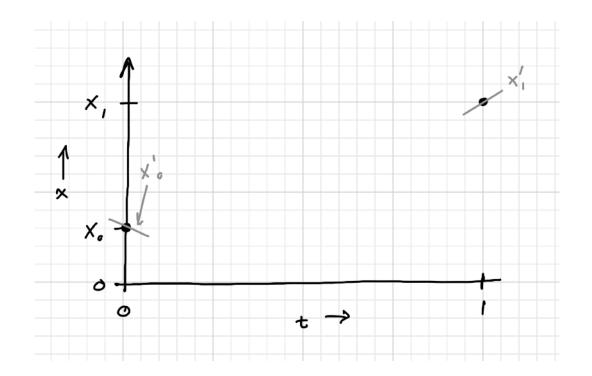


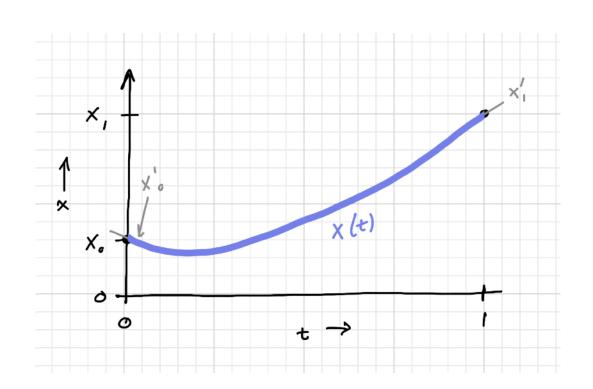
 $\mathbf{f}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1$

Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)

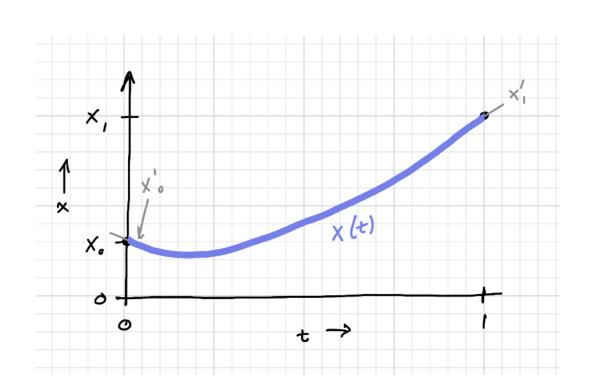






$$x(t) = at^3 + bt^2 + ct + d$$
$$x'(t) = 3at^2 + 2bt + c$$

Cornell CS4620 Fall 2020



$$x(t) = at^{3} + bt^{2} + ct + d$$

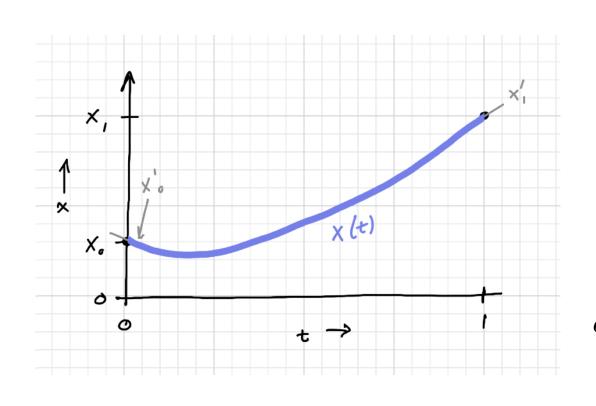
$$x'(t) = 3at^{2} + 2bt + c$$

$$x(0) = x_{0} = d$$

$$x(1) = x_{1} = a + b + c + d$$

$$x'(0) = x'_{0} = c$$

$$x'(1) = x'_{1} = 3a + 2b + c$$



$$x(t) = at^{3} + bt^{2} + ct + d$$

$$x'(t) = 3at^{2} + 2bt + c$$

$$x(0) = x_{0} = d$$

$$x(1) = x_{1} = a + b + c + d$$

$$x'(0) = x'_{0} = c$$

$$x'(1) = x'_{1} = 3a + 2b + c$$

$$d = x_{0}$$

$$c = x'_{0}$$

$$a = 2x_{0} - 2x_{1} + x'_{0} + x'_{1}$$

$$b = -3x_{0} + 3x_{1} - 2x'_{0} - x'_{1}$$

Cornell CS4620 Fall 2020

Hermite splines

• Matrix form is much cleaner

$$\mathbf{f}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{t}_0 \\ \mathbf{t}_1 \end{bmatrix}$$

- coefficients = rows
- basis functions = columns
 - note the two \mathbf{p} columns sum to $[0 \ 0 \ 0 \]^{\mathsf{T}}$

Matrix form of spline

$$\mathbf{f}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

 $\mathbf{f}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

Cornell CS4620 Fall 2020

Matrix form of spline

$$\mathbf{f}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

 $\mathbf{f}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

Cornell CS4620 Fall 2020

Matrix form of spline

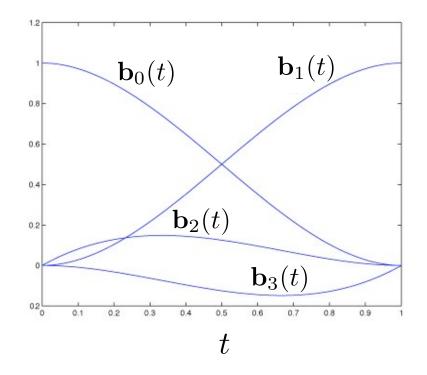
$$\mathbf{f}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

 $\mathbf{f}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

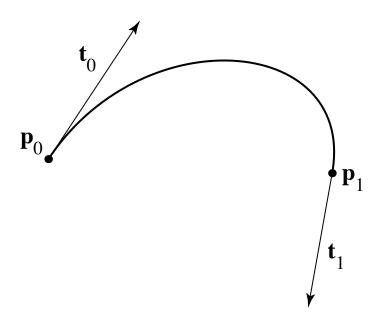
Cornell CS4620 Fall 2020

Hermite splines

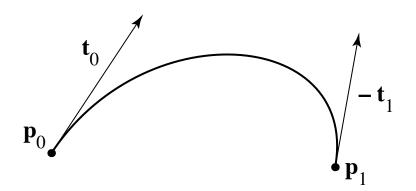
• Hermite blending functions



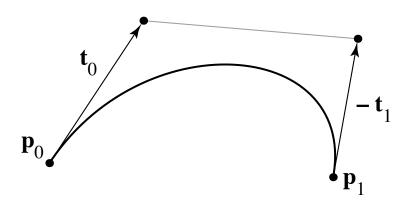
- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- Mixture of points and vectors is awkward
- Specify tangents as differences of points



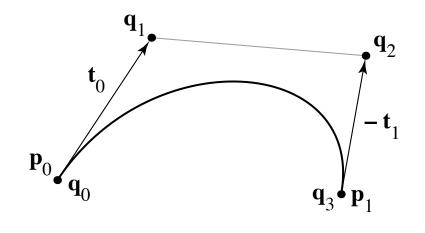
- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- note derivative is defined as 3 times offset

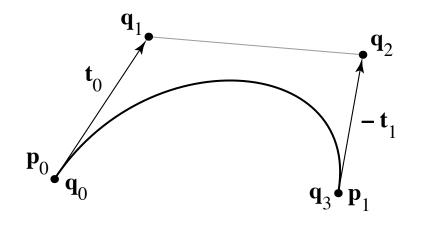
• reason is illustrated by linear case

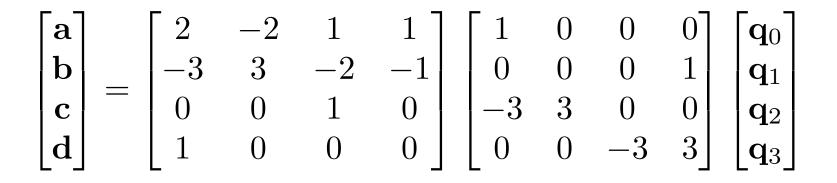
$$egin{aligned} {f p}_0 &= {f q}_0 \ {f p}_1 &= {f q}_3 \ {f t}_0 &= 3({f q}_1 - {f q}_0) \ {f t}_1 &= 3({f q}_3 - {f q}_2) \end{aligned}$$



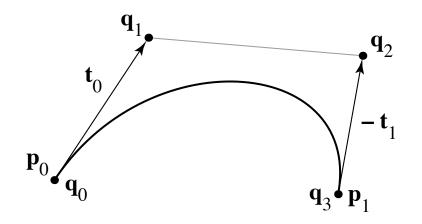
$$\begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

$$egin{aligned} \mathbf{p}_0 &= \mathbf{q}_0 \ \mathbf{p}_1 &= \mathbf{q}_3 \ \mathbf{t}_0 &= 3(\mathbf{q}_1 - \mathbf{q}_0) \ \mathbf{t}_1 &= 3(\mathbf{q}_3 - \mathbf{q}_2) \end{aligned}$$





$$egin{aligned} \mathbf{p}_0 &= \mathbf{q}_0 \ \mathbf{p}_1 &= \mathbf{q}_3 \ \mathbf{t}_0 &= 3(\mathbf{q}_1 - \mathbf{q}_0) \ \mathbf{t}_1 &= 3(\mathbf{q}_3 - \mathbf{q}_2) \end{aligned}$$



$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

Cornell CS4620 Fall 2020

Bézier matrix

$$\mathbf{f}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

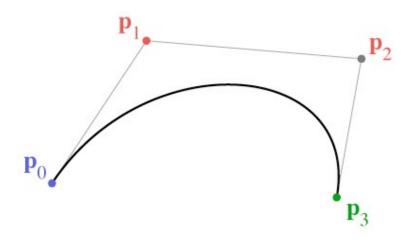
- note that the basis functions are the Bernstein polynomials

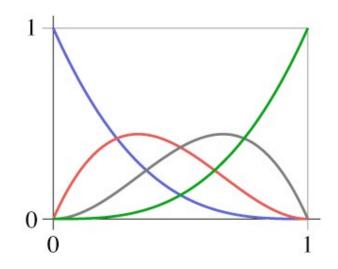
$$b_{n,k}(t) = \binom{n}{k} t^k (1-t)^{n-k}$$

and that defines Bézier curves for any degree

The \mathbf{p}_k column of the matrix defines the polynomial $b_{3,k}(t)$

Bézier basis





- A really boring spline segment: f(t) = p0
 - it only has one control point
 - the curve stays at that point for the whole time
- Only good for building a piecewise constant spline
 - a.k.a. a set of points

• **p**₀

- A piecewise linear spline segment
 - two control points per segment
 - blend them with weights α and β = 1 α
- Good for building a piecewise linear spline

- a.k.a. a polygon or polyline

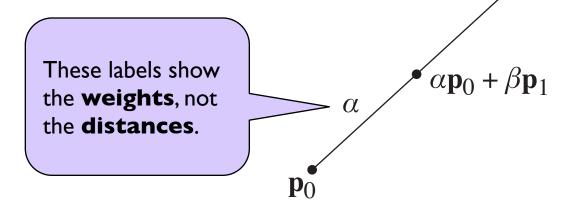
 $\alpha \mathbf{p}_0 + \beta \mathbf{p}_1$

α

 \mathbf{p}_0

p₁

- A piecewise linear spline segment
 - two control points per segment
 - blend them with weights α and β = 1 α
- Good for building a piecewise linear spline
 - a.k.a. a polygon or polyline



p₁

- A linear blend of two piecewise linear segments
 - three control points now

- finally, a curve!

- interpolate on both segments using α and β
- blend the results with the same weights
- makes a quadratic spline segment

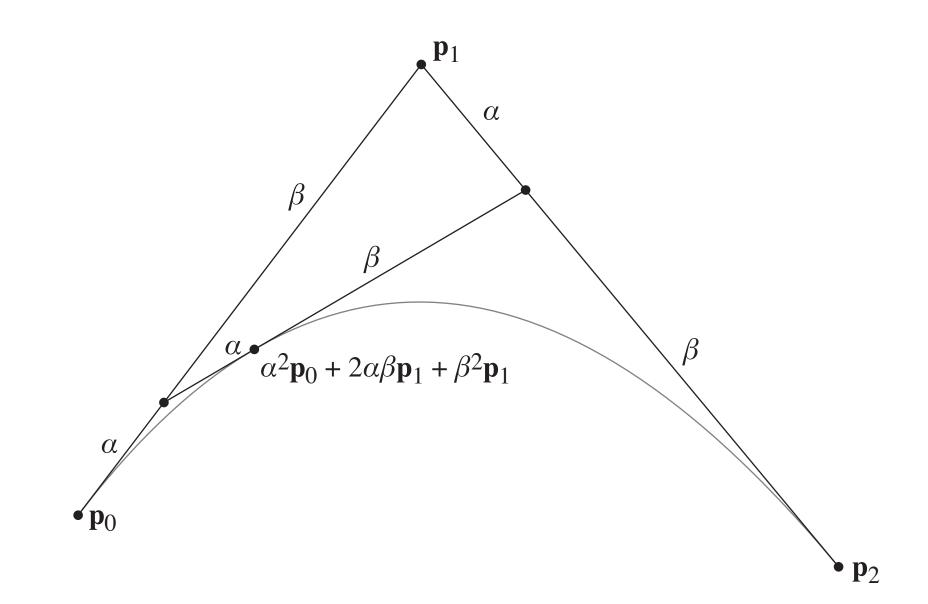
$$\mathbf{p}_{1,0} = \alpha \mathbf{p}_0 + \beta \mathbf{p}_1$$

$$\mathbf{p}_{1,1} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2$$

$$\mathbf{p}_{2,0} = \alpha \mathbf{p}_{1,0} + \beta \mathbf{p}_{1,1}$$

$$= \alpha \alpha \mathbf{p}_0 + \alpha \beta \mathbf{p}_1 + \beta \alpha \mathbf{p}_1 + \beta \beta \mathbf{p}_2$$

$$= \alpha^2 \mathbf{p}_0 + 2\alpha \beta \mathbf{p}_1 + \beta^2 \mathbf{p}_2$$



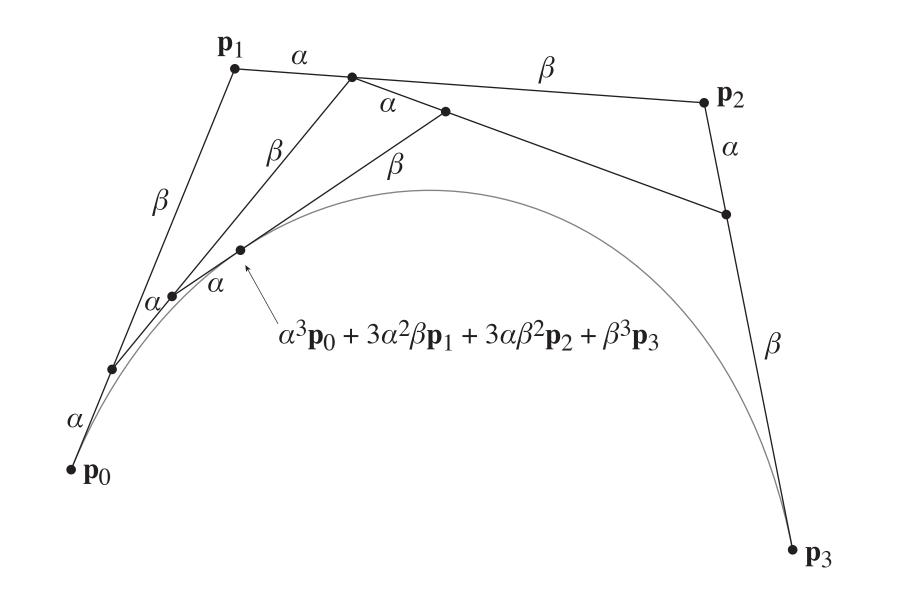
- Cubic segment: blend of two quadratic segments
 - four control points now (overlapping sets of 3)
 - interpolate on each quadratic using α and β
 - blend the results with the same weights
- makes a cubic spline segment
 - this is the familiar one for graphics—but you can keep going

$$\mathbf{p}_{3,0} = \alpha \mathbf{p}_{2,0} + \beta \mathbf{p}_{2,1}$$

$$= \alpha \alpha \alpha \mathbf{p}_0 + \alpha \alpha \beta \mathbf{p}_1 + \alpha \beta \alpha \mathbf{p}_1 + \alpha \beta \beta \mathbf{p}_2$$

$$\beta \alpha \alpha \mathbf{p}_1 + \beta \alpha \beta \mathbf{p}_2 + \beta \beta \alpha \mathbf{p}_2 + \beta \beta \beta \mathbf{p}_3$$

$$= \alpha^3 \mathbf{p}_0 + 3\alpha^2 \beta \mathbf{p}_1 + 3\alpha \beta^2 \mathbf{p}_2 + \beta^3 \mathbf{p}_3$$

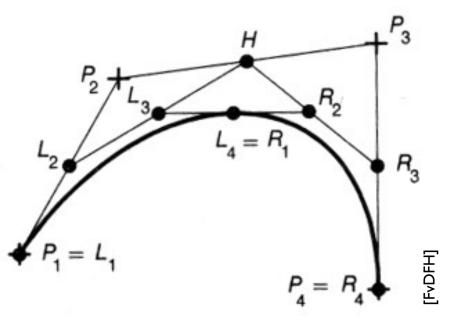


de Casteljau's algorithm

• A recurrence for computing points on Bézier spline segments:

$$\mathbf{p}_{0,i} = \mathbf{p}_i$$
$$\mathbf{p}_{n,i} = \alpha \mathbf{p}_{n-1,i} + \beta \mathbf{p}_{n-1,i+1}$$

 Cool additional feature: also subdivides the segment into two shorter ones

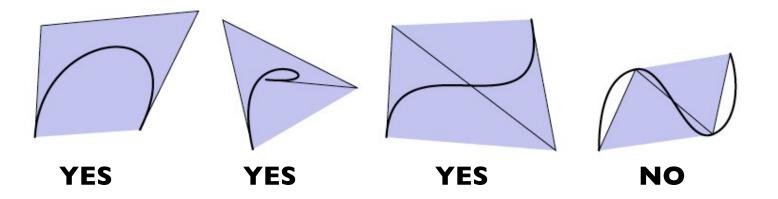


Cubic Bézier splines

- Very widely used type, especially in 2D
 e.g. it is a primitive in PostScript/PDF
- Can represent smooth curves with corners
- Nice de Casteljau recurrence for evaluation
- Can easily add points at any position
- Illustrator demo

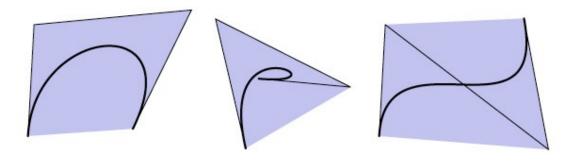
Spline segment properties

- Convex hull property
 - convex hull = smallest convex region containing points
 - think of a rubber band around some pins
 - some splines stay inside convex hull of control points
 - make clipping, culling, picking, etc. simpler



Convex hull

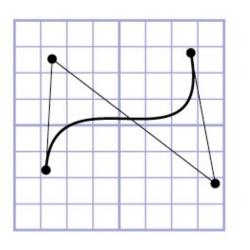
- If basis functions are all positive, the spline has the convex hull property
 - we're still requiring them to sum to I

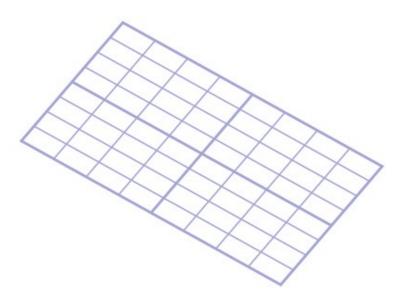


- if any basis function is ever negative, no convex hull prop.
 - proof: take the other three points at the same place

Affine invariance

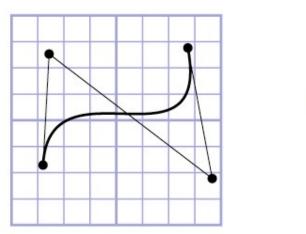
- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...

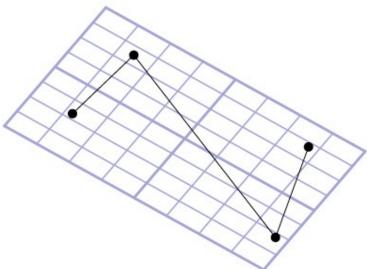




Affine invariance

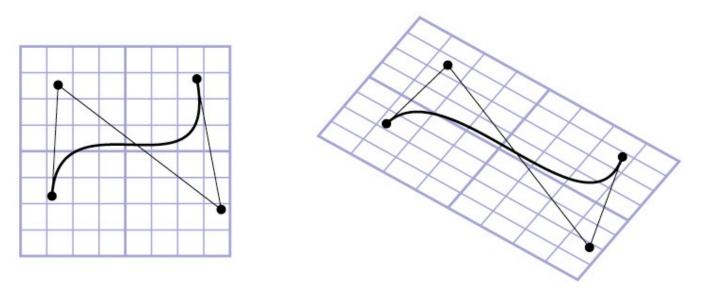
- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...





Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...



Spline Curves

Cornell CS4620 Fall 2020

Chaining spline segments

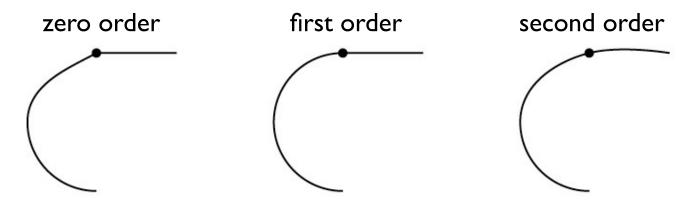
- Can only do so much with a single polynomial
- Can use these functions as segments of a longer curve
 - curve from t = 0 to t = 1 defined by first segment
 - curve from t = I to t = 2 defined by second segment

$$\mathbf{f}(t) = \mathbf{f}_i(t-i) \quad \text{for } i \le t \le i+1$$

To avoid discontinuity, match derivatives at junctions
 – this produces a C¹ curve

Continuity

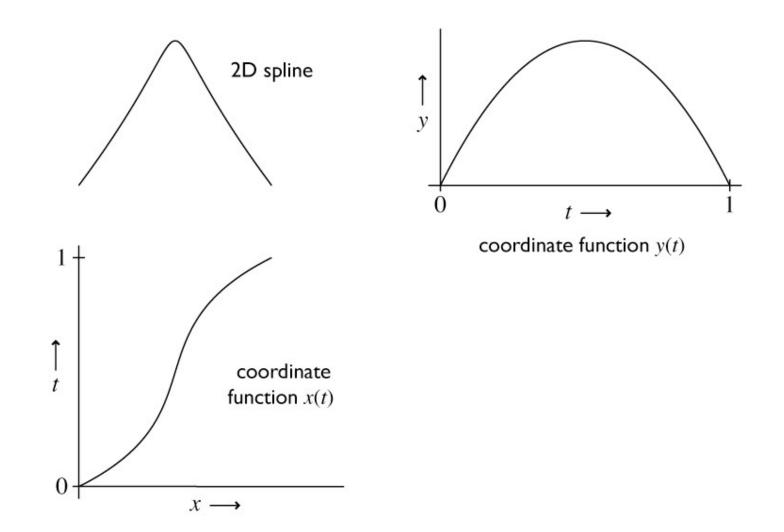
- Smoothness can be described by degree of continuity
 - zero-order (C^0): position matches from both sides
 - first-order (C^{1}) : tangent matches from both sides
 - second-order (C^2): curvature matches from both sides
 - $G^n vs. C^n$



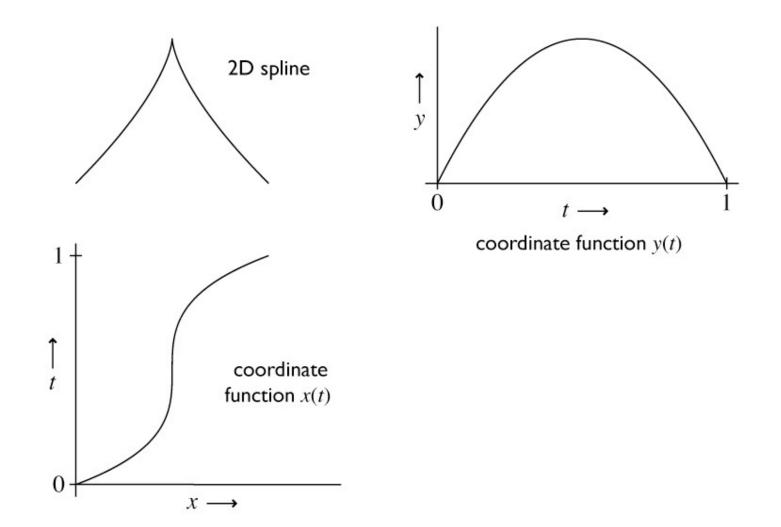
Continuity

- Parametric continuity (C) of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
 - Can be C^{\dagger} but not G^{\dagger} when $\mathbf{p}(t)$ comes to a halt (next slide)
 - Can be G^{I} but not C^{I} when the tangent vector changes length abruptly

Geometric vs. parametric continuity

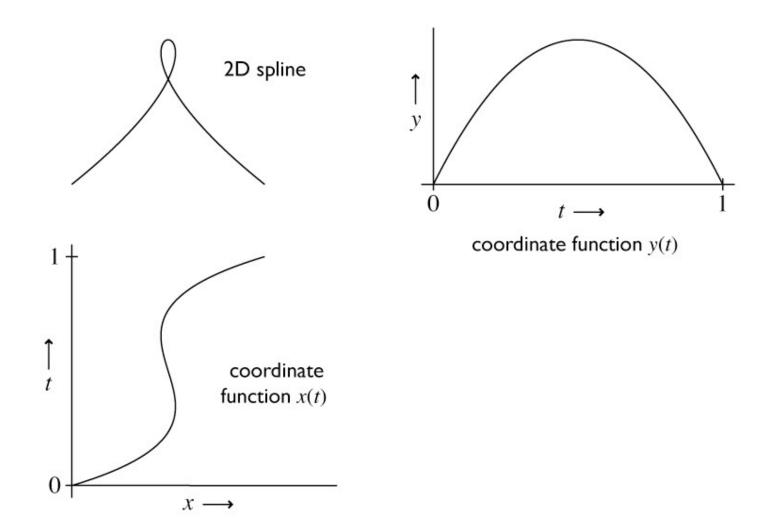


Geometric vs. parametric continuity



Cornell CS4620 Fall 2020

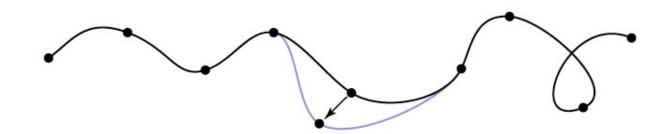
Geometric vs. parametric continuity



Control

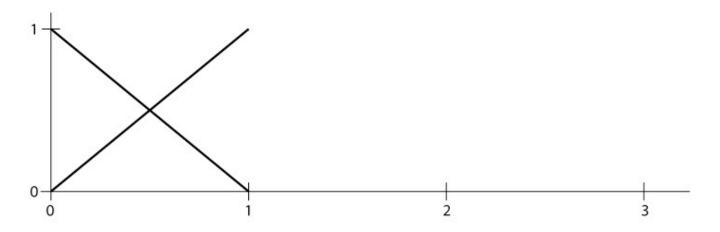
Local control

- changing control point only affects a limited part of spline
- without this, splines are very difficult to use
- many likely formulations lack this
 - natural spline
 - polynomial fits



Trivial example: piecewise linear

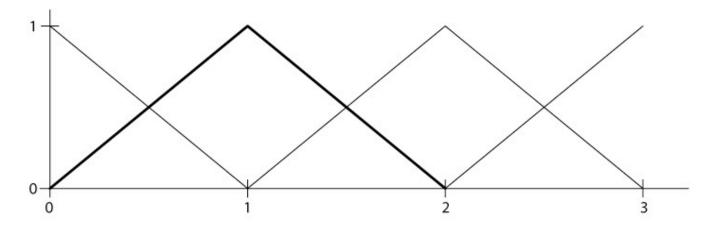
- Basis function formulation: "function times point"
 - basis functions: contribution of each point as t changes



– can think of them as blending functions glued together
– this is just like a reconstruction filter!

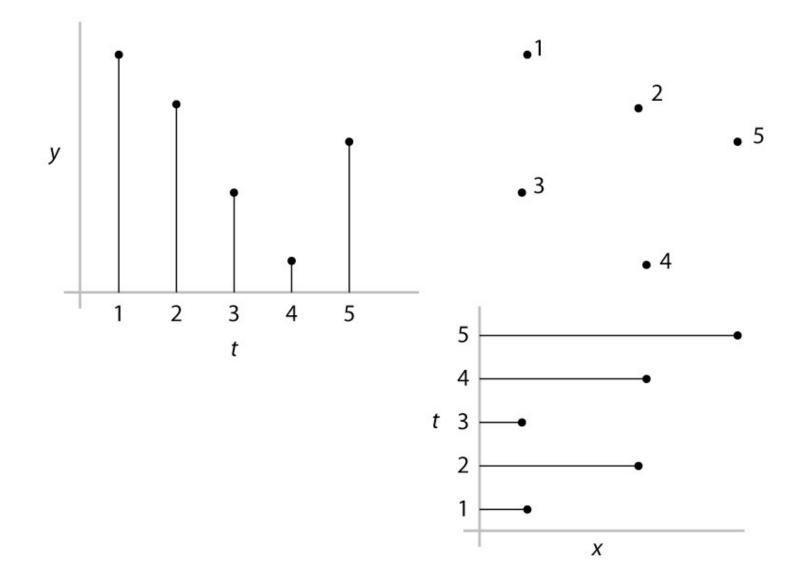
Trivial example: piecewise linear

- Basis function formulation: "function times point"
 - basis functions: contribution of each point as t changes



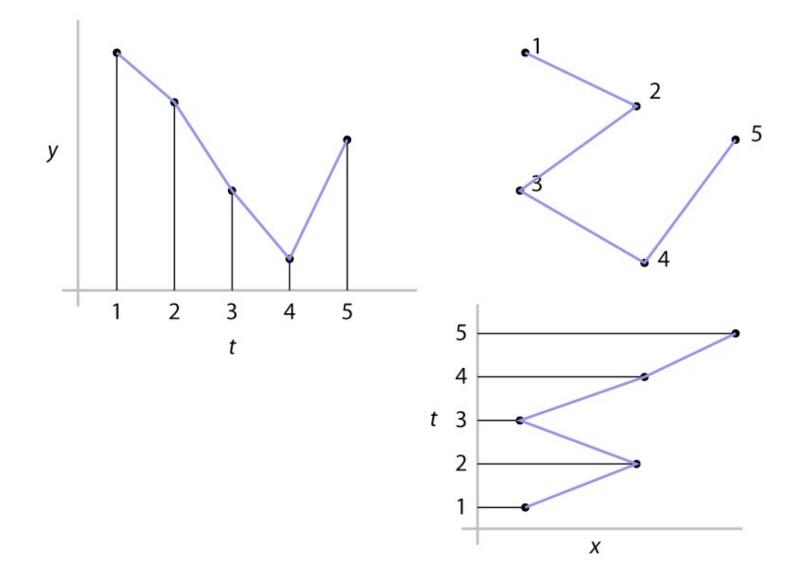
- can think of them as blending functions glued together
- this is just like a reconstruction filter!

Splines as reconstruction



Cornell CS4620 Fall 2020

Splines as reconstruction



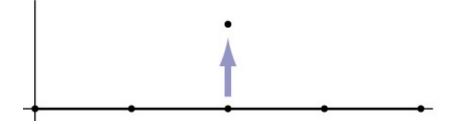
Cornell CS4620 Fall 2020

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up

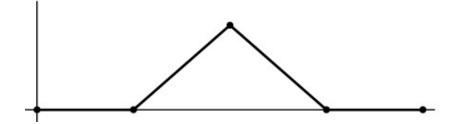
Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up



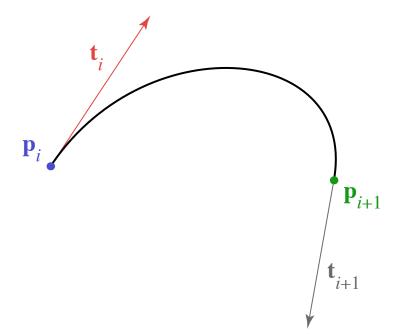
Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up



Hermite splines

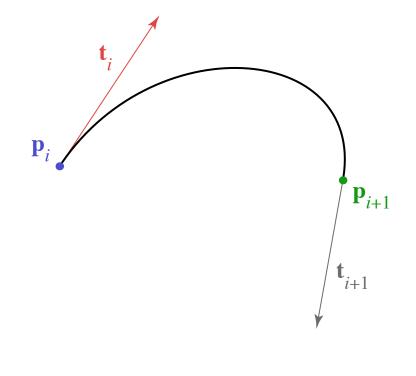
- Controls are endpoints and endpoint tangents
- Segments are chained by sharing points and tangents between adjacent segments

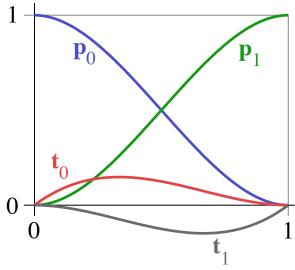


$$\mathbf{f}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 2 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}'_0 \\ \mathbf{p}'_1 \end{bmatrix}$$

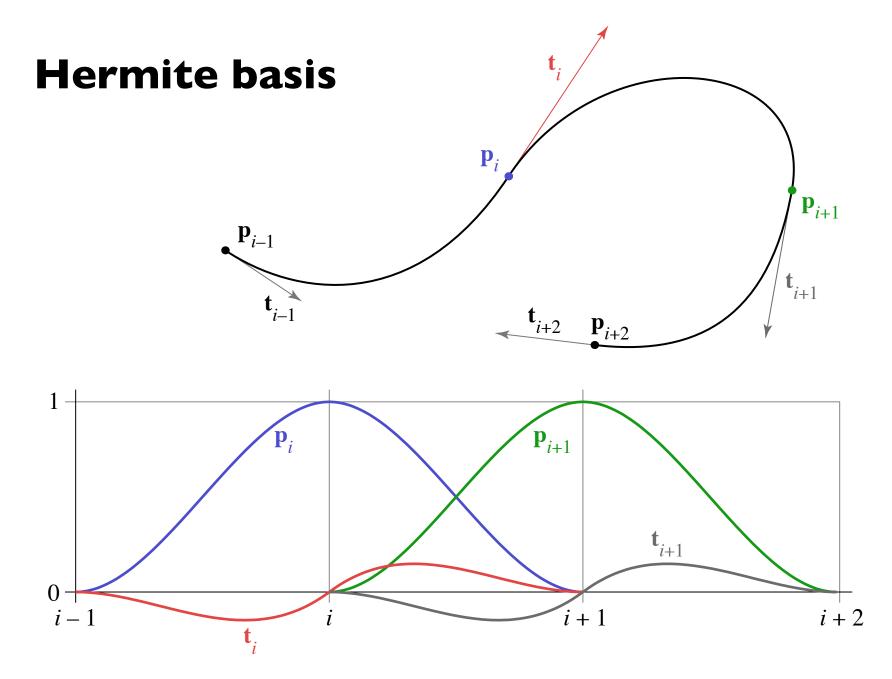
Hermite basis

Hermite basis

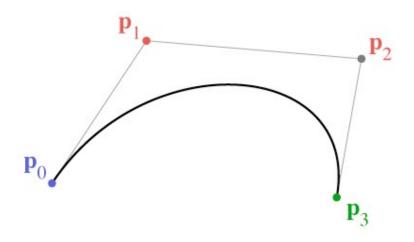


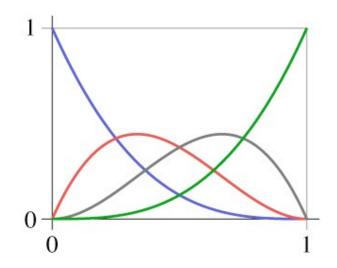


Cornell CS4620 Fall 2020



Bézier basis



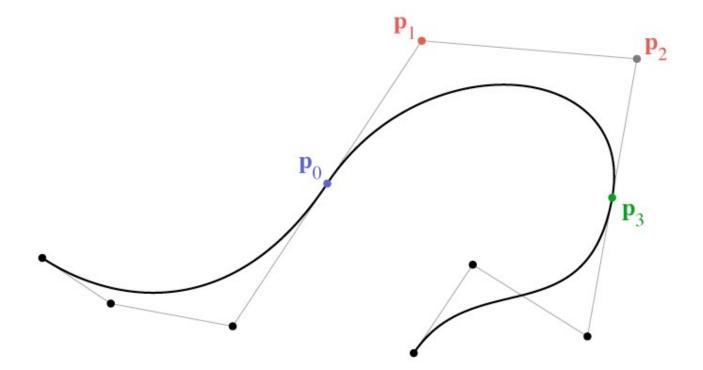


Chaining Bézier splines

- No continuity built in
- Achieve C¹ using collinear control points

Chaining Bézier splines

- No continuity built in
- Achieve C¹ using collinear control points



Making long uniform splines

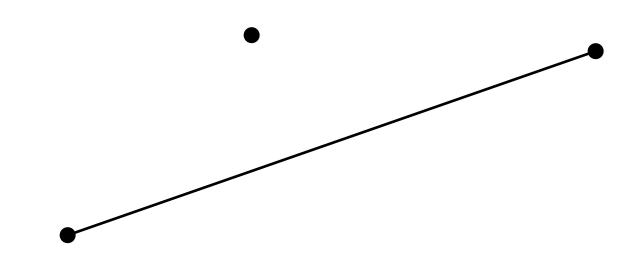
- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points
 - but it is fussy to maintain continuity constraints
 - and they interpolate every 3rd point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

- Have not yet seen any interpolating splines
- Would like to define tangents automatically

 use adjacent control points

- Have not yet seen any interpolating splines
- Would like to define tangents automatically

 use adjacent control points



- use adjacent control points

- Have not yet seen any interpolating splines
- Would like to define tangents automatically

- end tangents: extra points or zero

Cornell CS4620 Fall 2020

- Have not yet seen any interpolating splines
- Would like to define tangents automatically

use adjacent control points

- Have not yet seen any interpolating splines
- Would like to define tangents automatically

use adjacent control points

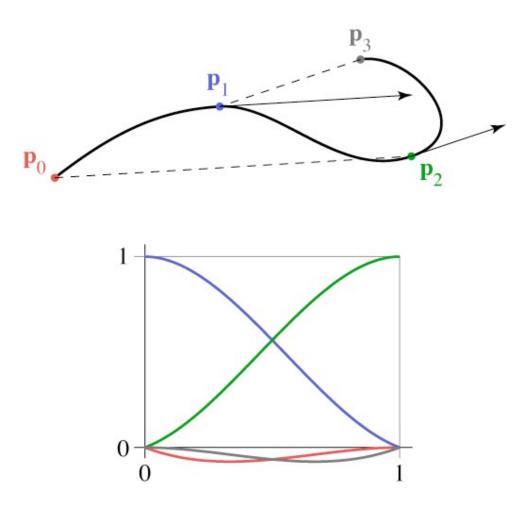
- Have not yet seen any interpolating splines
- Would like to define tangents automatically

use adjacent control points

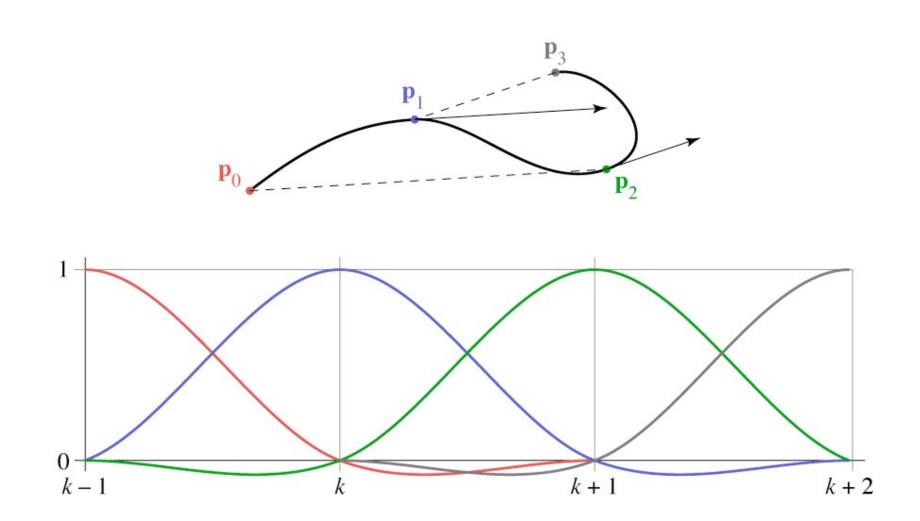
- Tangents are $(\mathbf{p}_{k+1} \mathbf{p}_{k-1}) / 2$
 - scaling based on same argument about collinear case $\mathbf{p}_0 = \mathbf{q}_k$ $\mathbf{p}_1 = \mathbf{q}_k + 1$ $\mathbf{v}_0 = 0.5(\mathbf{q}_{k+1} - \mathbf{q}_{k-1})$ $\mathbf{v}_1 = 0.5(\mathbf{q}_{k+2} - \mathbf{q}_K)$

 $\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -.5 & 0 & .5 & 0 \\ 0 & -.5 & 0 & .5 \end{bmatrix} \begin{bmatrix} \mathbf{q}_{k-1} \\ \mathbf{q}_k \\ \mathbf{q}_{k+1} \\ \mathbf{q}_{k+2} \end{bmatrix}$

Catmull-Rom basis



Catmull-Rom basis



Catmull-Rom splines

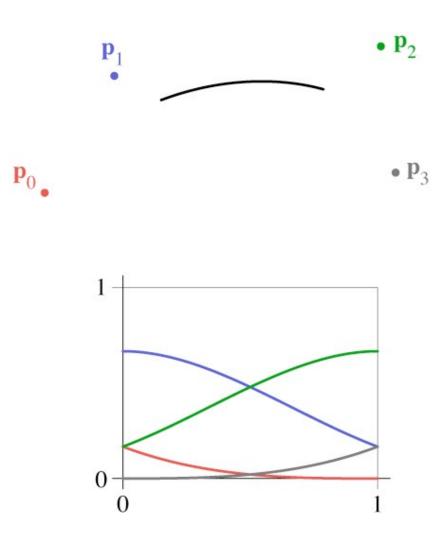
- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite

 in fact, all splines of this form are equivalent
- First example of a spline based on just a control point sequence
- Does not have convex hull property

B-splines

- We may want more continuity than C^I
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity

Cubic B-spline basis



Cubic B-spline basis



Cornell CS4620 Fall 2020

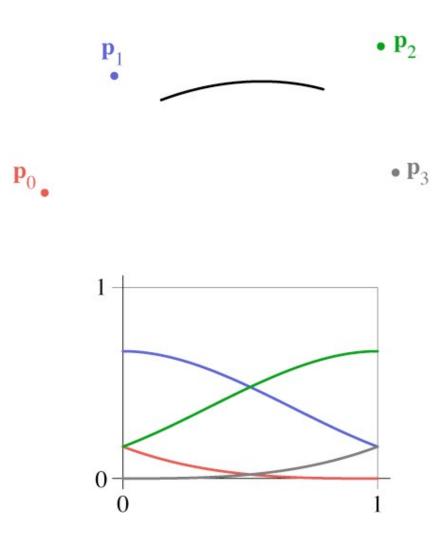
Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
 - Want all points and basis functions to be the same
 - Want a cubic spline; therefore 4 active control points
 - Want C^2 continuity
 - Turns out that is enough to determine everything

Cubic B-spline matrix

$$\mathbf{f}_{i}(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{i-1} \\ \mathbf{p}_{i} \\ \mathbf{p}_{i+1} \\ \mathbf{p}_{i+2} \end{bmatrix}$$

Cubic B-spline basis



Cornell CS4620 Fall 2020

Cubic B-spline basis



Cornell CS4620 Fall 2020

Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
 - key properties:
 - invariance under perspective as well as affine
 - ability to represent conic sections exactly

Converting spline representations

All the splines we have seen so far are equivalent
 all represented by spline matrices

$$\mathbf{p}_S(t) = T(t)M_S P_S$$

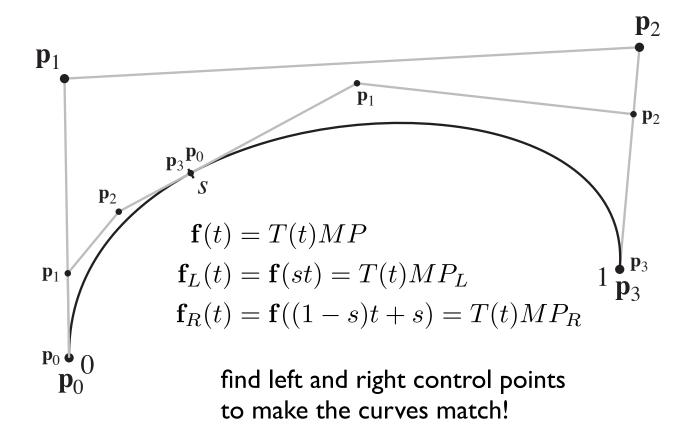
- where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication

$$P_{1} = M_{1}^{-1}M_{2}P_{2}$$
$$\mathbf{p}_{1}(t) = T(t)M_{1}(M_{1}^{-1}M_{2}P_{2}$$
$$= T(t)M_{2}P_{2} = \mathbf{p}_{2}(t)$$

Refinement and Evaluation

Refinement of splines

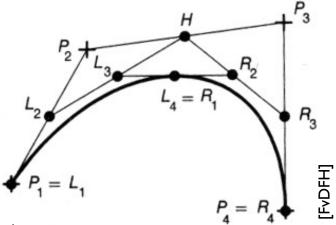
- May want to add more control to a curve
- Can add control by splitting a segment into two



Evaluating by subdivision

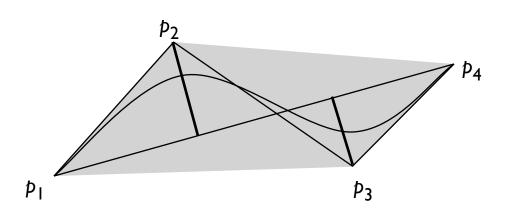
- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line
 - angles in control polygon

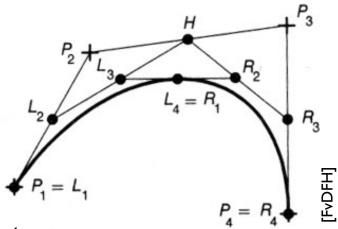




Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line
 - angles in control polygon





Summary

- Splines are piecewise polynomials
- Coefficients (and therefore any point on the curve) are *linear* functions of control point positions
- We saw 4 kinds of cubic spline curves
 - Hermite: points and tangents
 - Cubic Bézier: segment has 4 points, interpolates endpoints
 - Catmull-Rom: tangents defined by neighboring points
 - Cubic B-Spline: C^2 curves, each segment controlled by 4 neighboring points
- All are equivalent, can describe the same curves
- All can be split for refinement or adaptive display