
Steve Marschner • Cornell CS4620 Fall 2020

CS 4620 Lecture 14

Intro to Splines

1

Steve Marschner • Cornell CS4620 Fall 2020

• In many applications we need smooth shapes
– that is, without discontinuities

• So far we can make
– things with corners (lines, triangles, squares, rectangles, …)
– circles, ellipses, other special shapes (only get you so far!)

[B
oe

in
g]

Motivation: smoothness

2

Steve Marschner • Cornell CS4620 Fall 2020

• Pencil-and-paper draftsmen also needed smooth curves
• Origin of “spline:” strip of flexible metal

– held in place by pegs or weights to constrain shape
– traced to produce smooth contour

Classical approach

3

Steve Marschner • Cornell CS4620 Fall 2020

• Smoothness
– in drafting spline, comes from physical curvature minimization
– in CG spline, comes from choosing smooth functions

• usually low-order polynomials

• Control
– in drafting spline, comes from fixed pegs
– in CG spline, comes from user-specified control points

Translating into usable math

4

Steve Marschner • Cornell CS4620 Fall 2020

Piecewise polynomial functions

5

f(t) =

p0(t) t0 ≤ t < t1
p1(t) t1 ≤ t < t2
⋮

pn−1(t) tn−1 ≤ t ≤ tn

spline segments join at knots

knot values

Steve Marschner • Cornell CS4620 Fall 2020

• defines the value of a spline over an interval between
adjacent knot values

• is a polynomial with
coefficients that
depend linearly on
one or more controls

• type and meaning of
controls differs among
types of spline

Spline segment

6

Steve Marschner • Cornell CS4620 Fall 2020

• Knots are transitions between segments
– match values for continuity ()

– match derivatives for smoothness ()
C0

C1

Spline continuity

7

pk−1(tk) ≠ pk(tk)

pk−1(tk) = pk(tk)
p′ k−1(tk) ≠ p′ k(tk)

pk−1(tk) = pk(tk)
p′ k−1(tk) = p′ k(tk)

C0

C1

Steve Marschner • Cornell CS4620 Fall 2020

• 2D spline curves are parametric curves

• For splines, is piecewise polynomial
– for this lecture, the knots are at the integers

f(t)

Defining spline curves

8

S = {f(t) | t 2 [0, N]}

Steve Marschner • Cornell CS4620 Fall 2020

• 2D spline curves are parametric curves

• For splines, is piecewise polynomial
– for this lecture, the knots are at the integers

f(t)

Defining spline curves

8

S = {f(t) | t 2 [0, N]}

Steve Marschner • Cornell CS4620 Fall 2020

• 2D spline curves are parametric curves

• For splines, is piecewise polynomial
– for this lecture, the knots are at the integers

f(t)

Defining spline curves

8

S = {f(t) | t 2 [0, N]}

Steve Marschner • Cornell CS4620 Fall 2020

• 2D spline curves are parametric curves

• For splines, is piecewise polynomial
– for this lecture, the knots are at the integers

f(t)

Defining spline curves

8

S = {f(t) | t 2 [0, N]}

Steve Marschner • Cornell CS4620 Fall 2020

• Generally f(t) is a piecewise polynomial
– for this lecture, the discontinuities are at the integers
– e.g., a cubic spline has the following form over :

– Coefficients are different for every interval

[k, k + 1)

Defining spline curves

9

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

10

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

10

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

10

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

10

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

11

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

11

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

11

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

11

Steve Marschner • Cornell CS4620 Fall 2020

Coordinate functions

11

Steve Marschner • Cornell CS4620 Fall 2020

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points
– some splines interpolate only certain points (e.g. endpoints)

Control of spline curves

12

Steve Marschner • Cornell CS4620 Fall 2020

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points
– some splines interpolate only certain points (e.g. endpoints)

Control of spline curves

12

Steve Marschner • Cornell CS4620 Fall 2020

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points
– some splines interpolate only certain points (e.g. endpoints)

Control of spline curves

12

Steve Marschner • Cornell CS4620 Fall 2020

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points
– some splines interpolate only certain points (e.g. endpoints)

Control of spline curves

12

Steve Marschner • Cornell CS4620 Fall 2020

• Each coordinate is separate
– the function x(t) is determined solely by the x coordinates of

the control points
– this means 1D, 2D, 3D, … curves are all really the same

• Spline curves are linear functions of their controls
– moving a control point two inches to the right moves x(t)

twice as far as moving it by one inch
– x(t), for fixed t, is a linear combination (weighted sum) of the

controls’ x coordinates
– f(t), for fixed t, is a linear combination (weighted sum) of the

controls

Spline curves and their controls

13

Steve Marschner • Cornell CS4620 Fall 2020

• Today we are talking about defining 1D curves, living in
any dimension space
– emphasizing 2D
– higher dimensions are no more complex (just more coords)

• Splines can be used to define objects of any dimension
– 2D surfaces
– 3D solids
– …

• Higher dimensions are built from same 1D functions
– spline patches have control points
– joining patches together is more complicated than curves

N2

Context

14

Steve Marschner • Cornell CS4620 Fall 2020

1. Spline segments
– how to define a polynomial on [0,1]
– …that has the properties you want
– …and is easy to control

2. Spline curves
– how to chain together lots of segments
– …so that the whole curve has the properties you want
– …and is easy to control

3. Refinement and evaluation
– how to add detail to splines
– how to approximate them with line segments

Plan

15

Steve Marschner • Cornell CS4620 Fall 2020

Spline Segments

16

Steve Marschner • Cornell CS4620 Fall 2020

• A polynomial function over the interval
• When talking about a single segment, to keep things

simple, we assume

– that is, the segment lives on the interval

[tk, tk+1]

k = 0; t0 = 0; t1 = 1

[0,1]

A spline segment

17

Steve Marschner • Cornell CS4620 Fall 2020

• Control points are the vertices
• Each segment will be a linear function

– starts at (when)

– ends at (when)
– moves at constant speed along segment
– both coordinate functions are linear

p0 t = 0
p1 t = 1

Linear spline (line segment)

18

p0 = (x0, y0)

p1 = (x1, y1)

Steve Marschner • Cornell CS4620 Fall 2020

• Take one coordinate,
• It is linear:

– we want and

– this is achieved by and

x
x(t) = at + b
x(0) = x0 x(1) = x1

b = x0 a = x1 − x0

Linear interpolation

19

x(t) = (x1 − x0)t + x0

Steve Marschner • Cornell CS4620 Fall 2020

a linear polynomial with coefficients
that are linear functions of and

a linear combination of the values
 and with weights and

a linear combination of the functions
 and

with weights and

x0 x1

x0 x1 (1 − t) t

b0(t) = 1 − t b1(t) = t
x0 x1

Three equivalent notions

20

x(t) = (x1 − x0)t + x0

= (1 − t)x0 + tx1

= x0b0(t) + x1b1(t)

Steve Marschner • Cornell CS4620 Fall 2020

• A nice generalizable way of writing this is

Spline matrix

21

x(t) = [t 1] [−1 1
1 0] [x0

x1]

Steve Marschner • Cornell CS4620 Fall 2020

• A nice generalizable way of writing this is

Spline matrix

21

x(t) = [t 1] [−1 1
1 0] [x0

x1]
monomials spline

matrix controls

Steve Marschner • Cornell CS4620 Fall 2020

• A nice generalizable way of writing this is

Spline matrix

21

x(t) = [t 1] [−1 1
1 0] [x0

x1]
monomials spline

matrix controls

x(t) = [t 1] ([−1 1
1 0] [x0

x1]) = ([t 1] [−1 1
1 0]) [x0

x1]
group this way to see coefficients group this way to see basis functions

Steve Marschner • Cornell CS4620 Fall 2020

• Vector formulation

• Matrix formulation

Linear 2D spline segment

22

f(t) =
⇥
t 1

⇤ �1 1
1 0

�
p0

p1

�

x(t) = (x1 � x0)t+ x0

y(t) = (y1 � y0)t+ y0

f(t) = (p1 � p0)t+ p0

Steve Marschner • Cornell CS4620 Fall 2020

Basis function formulation

23

f(t) = b0(t)p0 + b1(t)p1

p0

p1

f(t)

Steve Marschner • Cornell CS4620 Fall 2020

• Less trivial example
• Form of curve: piecewise cubic
• Constraints: endpoints and tangents (derivatives)

Hermite splines

24

t0

p1

p0

t1

Steve Marschner • Cornell CS4620 Fall 2020

Hermite splines in 1D

25

Steve Marschner • Cornell CS4620 Fall 2020

Hermite splines in 1D

25

x(t) = at3 + bt2 + ct+ d

x0(t) = 3at2 + 2bt+ c

x(0) = x0 = d

x(1) = x1 = a+ b+ c+ d

x0(0) = x0
0 = c

x0(1) = x0
1 = 3a+ 2b+ c

Steve Marschner • Cornell CS4620 Fall 2020

Hermite splines in 1D

25

x(t) = at3 + bt2 + ct+ d

x0(t) = 3at2 + 2bt+ c

x(0) = x0 = d

x(1) = x1 = a+ b+ c+ d

x0(0) = x0
0 = c

x0(1) = x0
1 = 3a+ 2b+ c

x(t) = at3 + bt2 + ct+ d

x0(t) = 3at2 + 2bt+ c

x(0) = x0 = d

x(1) = x1 = a+ b+ c+ d

x0(0) = x0
0 = c

x0(1) = x0
1 = 3a+ 2b+ c

Steve Marschner • Cornell CS4620 Fall 2020

Hermite splines in 1D

25

x(t) = at3 + bt2 + ct+ d

x0(t) = 3at2 + 2bt+ c

x(0) = x0 = d

x(1) = x1 = a+ b+ c+ d

x0(0) = x0
0 = c

x0(1) = x0
1 = 3a+ 2b+ c

d = x0

c = x0
0

a = 2x0 � 2x1 + x0
0 + x0

1

b = �3x0 + 3x1 � 2x0
0 � x0

1

x(t) = at3 + bt2 + ct+ d

x0(t) = 3at2 + 2bt+ c

x(0) = x0 = d

x(1) = x1 = a+ b+ c+ d

x0(0) = x0
0 = c

x0(1) = x0
1 = 3a+ 2b+ c

Steve Marschner • Cornell CS4620 Fall 2020

• Matrix form is much cleaner

– coefficients = rows
– basis functions = columns

• note the two p columns sum to [0 0 0 1]T

Hermite splines

26

f(t) =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0

p1

t0
t1

3

775

Steve Marschner • Cornell CS4620 Fall 2020

Matrix form of spline

27

⇥
t3 t2 t 1

⇤

2

664

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

3

775

2

664

p0

p1

p2

p3

3

775

f(t) = b0(t)p0 + b1(t)p1 + b2(t)p2 + b3(t)p3

f(t) = at3 + bt2 + ct+ d

Steve Marschner • Cornell CS4620 Fall 2020

Matrix form of spline

27

⇥
t3 t2 t 1

⇤

2

664

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

3

775

2

664

p0

p1

p2

p3

3

775

f(t) = b0(t)p0 + b1(t)p1 + b2(t)p2 + b3(t)p3

f(t) = at3 + bt2 + ct+ d

Steve Marschner • Cornell CS4620 Fall 2020

Matrix form of spline

27

⇥
t3 t2 t 1

⇤

2

664

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

3

775

2

664

p0

p1

p2

p3

3

775

f(t) = b0(t)p0 + b1(t)p1 + b2(t)p2 + b3(t)p3

f(t) = at3 + bt2 + ct+ d

Steve Marschner • Cornell CS4620 Fall 2020

• Hermite blending functions

Hermite splines

28

t

b2(t)

b3(t)

b0(t) b1(t)

Steve Marschner • Cornell CS4620 Fall 2020

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

Hermite to Bézier

29

p0

t0

p1

t1

Steve Marschner • Cornell CS4620 Fall 2020

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

Hermite to Bézier

29

p0

t0

p1

– t1

Steve Marschner • Cornell CS4620 Fall 2020

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

Hermite to Bézier

29

p0

t0

p1

– t1

Steve Marschner • Cornell CS4620 Fall 2020

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

– note derivative is defined as 3 times offset
• reason is illustrated by linear case

Hermite to Bézier

29

p0

t0

p1

– t1

q0

q1 q2

q3

I’m calling these
points q just for
this slide and the
next one.

Steve Marschner • Cornell CS4620 Fall 2020

Hermite to Bézier

30

p0

t0

p1

– t1

q0

q1 q2

q3

p0 = q0

p1 = q3

t0 = 3(q1 � q0)

t1 = 3(q3 � q2)

2

664

p0

p1

v0

v1

3

775 =

2

664

1 0 0 0
0 0 0 1
�3 3 0 0
0 0 �3 3

3

775

2

664

q0

q1

q2

q3

3

775

Steve Marschner • Cornell CS4620 Fall 2020

Hermite to Bézier

30

p0

t0

p1

– t1

q0

q1 q2

q3

p0 = q0

p1 = q3

t0 = 3(q1 � q0)

t1 = 3(q3 � q2)

2

664

a
b
c
d

3

775 =

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

1 0 0 0
0 0 0 1
�3 3 0 0
0 0 �3 3

3

775

2

664

q0

q1

q2

q3

3

775

Steve Marschner • Cornell CS4620 Fall 2020

Hermite to Bézier

30

p0

t0

p1

– t1

q0

q1 q2

q3

p0 = q0

p1 = q3

t0 = 3(q1 � q0)

t1 = 3(q3 � q2)

2

664

a
b
c
d

3

775 =

2

664

�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3

775

2

664

q0

q1

q2

q3

3

775

Steve Marschner • Cornell CS4620 Fall 2020

– note that the basis functions are the Bernstein polynomials

and that defines Bézier curves for any degree

Bézier matrix

31

f(t) =
⇥
t3 t2 t 1

⇤

2

664

�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3

775

2

664

p0

p1

p2

p3

3

775

bn,k(t) =

✓
n

k

◆
tk(1� t)n�k The pk column

of the matrix
defines the
polynomial
b3,k(t)

Steve Marschner • Cornell CS4620 Fall 2020

Bézier basis

32

Steve Marschner • Cornell CS4620 Fall 2020

• A really boring spline segment: f(t) = p0
– it only has one control point
– the curve stays at that point for the whole time

• Only good for building a piecewise constant spline
– a.k.a. a set of points

Another way to Bézier segments

33

p0

Steve Marschner • Cornell CS4620 Fall 2020

• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a
piecewise linear spline
– a.k.a. a polygon or polyline

Another way to Bézier segments

34

Ơ

ơ

p0

Ơp0 + ơp1

p1

Steve Marschner • Cornell CS4620 Fall 2020

• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a
piecewise linear spline
– a.k.a. a polygon or polyline

Another way to Bézier segments

34

Ơ

ơ

p0

Ơp0 + ơp1

p1

These labels show
the weights, not
the distances.

Steve Marschner • Cornell CS4620 Fall 2020

• A linear blend of two piecewise linear segments
– three control points now
– interpolate on both segments using α and β
– blend the results with the same weights

• makes a quadratic spline segment
– finally, a curve!

Another way to Bézier segments

35

p1,0 = ↵p0 + �p1

p1,1 = ↵p1 + �p2

p2,0 = ↵p1,0 + �p1,1

= ↵↵p0 + ↵�p1 + �↵p1 + ��p2

= ↵2p0 + 2↵�p1 + �2p2

Steve Marschner • Cornell CS4620 Fall 2020 36

Ơ

Ơ

Ơ

ơ

ơ

ơ

Ơ2p0 + 2Ơơp1 + ơ2p1

p0

p2

p1

Steve Marschner • Cornell CS4620 Fall 2020

• Cubic segment: blend of two quadratic segments
– four control points now (overlapping sets of 3)
– interpolate on each quadratic using α and β
– blend the results with the same weights

• makes a cubic spline segment
– this is the familiar one for graphics—but you can keep going

Another way to Bézier segments

37

p3,0 =↵p2,0 + �p2,1

=↵↵↵p0 + ↵↵�p1 + ↵�↵p1 + ↵��p2

�↵↵p1 + �↵�p2 + ��↵p2 + ���p3

=↵3p0 + 3↵2�p1 + 3↵�2p2 + �3p3

Steve Marschner • Cornell CS4620 Fall 2020 38

Ơ

Ơ Ơ

Ơ
Ơ

Ơ

ơ

ơ

ơ

ơơ

Ơ3p0 + 3Ơ2ơp1 + 3Ơơ2p2 + ơ3p3

p0

p2

p3

p1

Steve Marschner • Cornell CS4620 Fall 2020

• A recurrence for computing points on Bézier spline
segments:

• Cool additional feature:
also subdivides
the segment into two
shorter ones

[F
vD

FH
]

de Casteljau’s algorithm

39

p0,i = pi

pn,i = ↵pn�1,i + �pn�1,i+1

Steve Marschner • Cornell CS4620 Fall 2020

• Very widely used type, especially in 2D
– e.g. it is a primitive in PostScript/PDF

• Can represent smooth curves with corners
• Nice de Casteljau recurrence for evaluation
• Can easily add points at any position
• Illustrator demo

Cubic Bézier splines

40

Steve Marschner • Cornell CS4620 Fall 2020

• Convex hull property
– convex hull = smallest convex region containing points

• think of a rubber band around some pins
– some splines stay inside convex hull of control points

• make clipping, culling, picking, etc. simpler

YES YES YES NO

Spline segment properties

41

Steve Marschner • Cornell CS4620 Fall 2020

• If basis functions are all positive, the spline has the
convex hull property
– we’re still requiring them to sum to 1

– if any basis function is ever negative, no convex hull prop.
• proof: take the other three points at the same place

Convex hull

42

Steve Marschner • Cornell CS4620 Fall 2020

• Transforming the control points is the same as
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

Affine invariance

43

Steve Marschner • Cornell CS4620 Fall 2020

• Transforming the control points is the same as
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

Affine invariance

43

Steve Marschner • Cornell CS4620 Fall 2020

• Transforming the control points is the same as
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

Affine invariance

43

Steve Marschner • Cornell CS4620 Fall 2020

Spline Curves

44

Steve Marschner • Cornell CS4620 Fall 2020

• Can only do so much with a single polynomial
• Can use these functions as segments of a longer curve

– curve from t = 0 to t = 1 defined by first segment
– curve from t = 1 to t = 2 defined by second segment

• To avoid discontinuity, match derivatives at junctions
– this produces a C1 curve

Chaining spline segments

45

f(t) = fi(t� i) for i t i+ 1

Steve Marschner • Cornell CS4620 Fall 2020

• Smoothness can be described by degree of continuity
– zero-order (C0): position matches from both sides

– first-order (C1): tangent matches from both sides

– second-order (C2): curvature matches from both sides

– Gn vs. Cn

zero order first order second order

Continuity

46

Steve Marschner • Cornell CS4620 Fall 2020

• Parametric continuity (C) of spline is continuity of
coordinate functions

• Geometric continuity (G) is continuity of the curve
itself

• Neither form of continuity is guaranteed by the other
– Can be C1 but not G1 when p(t) comes to a halt (next slide)

– Can be G1 but not C1 when the tangent vector changes length
abruptly

Continuity

47

Steve Marschner • Cornell CS4620 Fall 2020

Geometric vs. parametric continuity

48

Steve Marschner • Cornell CS4620 Fall 2020

Geometric vs. parametric continuity

48

Steve Marschner • Cornell CS4620 Fall 2020

Geometric vs. parametric continuity

48

Steve Marschner • Cornell CS4620 Fall 2020

• Local control
– changing control point only affects a limited part of spline
– without this, splines are very difficult to use
– many likely formulations lack this

• natural spline
• polynomial fits

Control

49

Steve Marschner • Cornell CS4620 Fall 2020

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together
– this is just like a reconstruction filter!

Trivial example: piecewise linear

50

Steve Marschner • Cornell CS4620 Fall 2020

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together
– this is just like a reconstruction filter!

Trivial example: piecewise linear

50

Steve Marschner • Cornell CS4620 Fall 2020

Splines as reconstruction

51

Steve Marschner • Cornell CS4620 Fall 2020

Splines as reconstruction

51

Steve Marschner • Cornell CS4620 Fall 2020

• Basis functions of a spline are revealed by how the
curve changes in response to a change in one control
– to get a graph of the basis function, start with the curve laid

out in a straight, constant-speed line
• what are x(t) and y(t)?

– then move one control straight up

Seeing the basis functions

52

Steve Marschner • Cornell CS4620 Fall 2020

• Basis functions of a spline are revealed by how the
curve changes in response to a change in one control
– to get a graph of the basis function, start with the curve laid

out in a straight, constant-speed line
• what are x(t) and y(t)?

– then move one control straight up

Seeing the basis functions

52

Steve Marschner • Cornell CS4620 Fall 2020

• Basis functions of a spline are revealed by how the
curve changes in response to a change in one control
– to get a graph of the basis function, start with the curve laid

out in a straight, constant-speed line
• what are x(t) and y(t)?

– then move one control straight up

Seeing the basis functions

52

Steve Marschner • Cornell CS4620 Fall 2020

• Controls are endpoints
and endpoint tangents

• Segments are chained
by sharing points and
tangents between
adjacent segments

Hermite splines

53

f(t) =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 2
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0

p1

p0
0

p0
1

3

775

ti

pi+1

pi

ti+1

Steve Marschner • Cornell CS4620 Fall 2020

Hermite basis

54

Steve Marschner • Cornell CS4620 Fall 2020

Hermite basis

54

0
0 1

1
p1

t0

p0

t1

ti

pi+1

pi

ti+1

Steve Marschner • Cornell CS4620 Fall 2020

Hermite basis

54

0

1

i i + 1i – 1 i + 2

pi+1

ti

pi

ti+1

ti

pi+1

pi

ti+1

pi–1

ti–1 ti+2 pi+2

Steve Marschner • Cornell CS4620 Fall 2020

Bézier basis

55

Steve Marschner • Cornell CS4620 Fall 2020

• No continuity built in
• Achieve C1 using collinear control points

Chaining Bézier splines

56

Steve Marschner • Cornell CS4620 Fall 2020

• No continuity built in
• Achieve C1 using collinear control points

Chaining Bézier splines

56

Steve Marschner • Cornell CS4620 Fall 2020

• Hermite curves are convenient because they can be
made long easily

• Bézier curves are convenient because their controls
are all points
– but it is fussy to maintain continuity constraints
– and they interpolate every 3rd point, which is a little odd

• We derived Bézier from Hermite by defining tangents
from control points
– a similar construction leads to the interpolating Catmull-Rom

spline

Making long uniform splines

57

Steve Marschner • Cornell CS4620 Fall 2020

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

58

Steve Marschner • Cornell CS4620 Fall 2020

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

58

Steve Marschner • Cornell CS4620 Fall 2020

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

58

Steve Marschner • Cornell CS4620 Fall 2020

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

58

Steve Marschner • Cornell CS4620 Fall 2020

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

58

Steve Marschner • Cornell CS4620 Fall 2020

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

58

Steve Marschner • Cornell CS4620 Fall 2020

• Tangents are (pk + 1 – pk – 1) / 2

– scaling based on same argument about collinear case

Hermite to Catmull-Rom

59

Steve Marschner • Cornell CS4620 Fall 2020

Catmull-Rom basis

60

Steve Marschner • Cornell CS4620 Fall 2020

Catmull-Rom basis

60

Steve Marschner • Cornell CS4620 Fall 2020

• Our first example of an interpolating spline
• Like Bézier, equivalent to Hermite

– in fact, all splines of this form are equivalent

• First example of a spline based on just a control point
sequence

• Does not have convex hull property

Catmull-Rom splines

61

Steve Marschner • Cornell CS4620 Fall 2020

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long splines

with arbitrary order of continuity

B-splines

62

Steve Marschner • Cornell CS4620 Fall 2020

Cubic B-spline basis

63

Steve Marschner • Cornell CS4620 Fall 2020

Cubic B-spline basis

63

Steve Marschner • Cornell CS4620 Fall 2020

• Approached from a different tack than Hermite-style
constraints
– Want all points and basis functions to be the same
– Want a cubic spline; therefore 4 active control points

– Want C2 continuity
– Turns out that is enough to determine everything

Deriving the B-Spline

64

Steve Marschner • Cornell CS4620 Fall 2020

Cubic B-spline matrix

65

fi(t) =
⇥
t3 t2 t 1

⇤
· 1
6

2

664

�1 3 �3 1
3 �6 3 0
�3 0 3 0
1 4 1 0

3

775

2

664

pi�1

pi

pi+1

pi+2

3

775

Steve Marschner • Cornell CS4620 Fall 2020

Cubic B-spline basis

66

Steve Marschner • Cornell CS4620 Fall 2020

Cubic B-spline basis

66

Steve Marschner • Cornell CS4620 Fall 2020

• Nonuniform B-splines
– discontinuities not evenly spaced
– allows control over continuity or interpolation at certain

points
– e.g. interpolate endpoints (commonly used case)

• Nonuniform Rational B-splines (NURBS)
– ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
– key properties:

• invariance under perspective as well as affine
• ability to represent conic sections exactly

Other types of B-splines

67

Steve Marschner • Cornell CS4620 Fall 2020

• All the splines we have seen so far are equivalent
– all represented by spline matrices

• where S represents the type of spline
– therefore the control points may be transformed from one

type to another using matrix multiplication

Converting spline representations

68

Steve Marschner • Cornell CS4620 Fall 2020

Refinement and Evaluation

69

Steve Marschner • Cornell CS4620 Fall 2020

• May want to add more control to a curve
• Can add control by splitting a segment into two

Refinement of splines

70

s

0p0

p1

p2

p3

p3

p0

p1
p2

p0

p1
p2

p31

find left and right control points
to make the curves match!

f(t) = T (t)MP

fL(t) = f(st) = T (t)MPL

fR(t) = f((1� s)t+ s) = T (t)MPR

Steve Marschner • Cornell CS4620 Fall 2020

– Recursively split spline
• stop when polygon is

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line
• angles in control polygon

[F
vD

FH
]

Evaluating by subdivision

71

p1

p2

p3

p4

Steve Marschner • Cornell CS4620 Fall 2020

– Recursively split spline
• stop when polygon is

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line
• angles in control polygon

[F
vD

FH
]

Evaluating by subdivision

71

p1

p2

p3

p4

Steve Marschner • Cornell CS4620 Fall 2020

• Splines are piecewise polynomials
• Coefficients (and therefore any point on the curve) are

linear functions of control point positions
• We saw 4 kinds of cubic spline curves

– Hermite: points and tangents
– Cubic Bézier: segment has 4 points, interpolates endpoints
– Catmull-Rom: tangents defined by neighboring points
– Cubic B-Spline: curves, each segment controlled by 4

neighboring points

• All are equivalent, can describe the same curves
• All can be split for refinement or adaptive display

C2

Summary

72

