Intro to Splines

CS 4620 Lecture 14
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Motivation: smoothness

* In many applications we need smooth shapes

— that is, without discontinuities

=
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 So far we can make

[Boeing]

— things with corners (lines, triangles, squares, rectangles, ...)
— circles, ellipses, other special shapes (only get you so far!)
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Classical approach

* Pencil-and-paper draftsmen also needed smooth curves
* Origin of “spline:” strip of flexible metal

— held in place by pegs or weights to constrain shape
— traced to produce smooth contour
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Translating into usable math

* Smoothness
— in drafting spline, comes from physical curvature minimization
— in CG spline, comes from choosing smooth functions
* usually low-order polynomials
e Control
— in drafting spline, comes from fixed pegs
— in CG spline, comes from user-specified control points
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Piecewise polynomial functions
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Spline segment

* defines the value of a spline over an interval between
adjacent knot values

. . . /\ 1‘/C,ow\'vb\
* is a polynomial with p 1
coefficients that 0 = f ——
depend linearly on  { | 7
one or more controls ol
* type and meaning of
controls differs among LS
types of spline : ﬁ
t, P
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Spline continuity it # pulty)
0—\

* Knots are transitions between segments

— match values for continuity (C) ¢,

— match derivatives for smoothness (C')
Pr-1(t) = p(t)
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Defining spline curves

* 2D spline curves are parametric curves

S ={f(t)|t € [0,N]}

* For splines, f(?) is piecewise polynomial

— for this lecture, the knots are at the integers
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Defining spline curves

* 2D spline curves are parametric curves

S={f(t)|te[0,N

 For splines, f(7) is piecewise po

|y

ynomial

— for this lecture, the knots are at the integers

4
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Defining spline curves

* Generally f(t) is a piecewise polynomial
— for this lecture, the discontinuities are at the integers
— e.g.,a cubic spline has the following form over [k, k + 1):

T(t) = azt® + byt® + cgt + dy
y(t) = ayt® + byt® + ¢yt + dy

— Coefficients are different for every interval
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Coordinate functions

2D spline

)
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Coordinate functions
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coordinate function x(7)
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Coordinate functions
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Control of spline curves

* Specified by a sequence of controls (points or vectors)

* Shape is guided by control points (aka control polygon)
— interpolating: passes through points
— approximating: merely guided by points
— some splines interpolate only certain points (e.g. endpoints)
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Spline curves and their controls

* Each coordinate is separate

— the function x(t) is determined solely by the x coordinates of
the control points

— this means |D, 2D, 3D, ... curves are all really the same

* Spline curves are linear functions of their controls

— moving a control point two inches to the right moves x(t)
twice as far as moving it by one inch

— x(t), for fixed t, is a linear combination (weighted sum) of the
controls’ x coordinates

— f(t), for fixed t, is a linear combination (weighted sum) of the
controls
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Context

* Today we are talking about defining |D curves, living in
any dimension space

— emphasizing 2D
— higher dimensions are no more complex (just more coords)
* Splines can be used to define objects of any dimension

— 2D surfaces
— 3D solids

* Higher dimensions are built from same |ID functions
— spline patches have N control points

— joining patches together is more complicated than curves
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Plan

|. Spline segments
— how to define a polynomial on [0, ]
— ...that has the properties you want
— ...and is easy to control

2. Spline curves
— how to chain together lots of segments
— ...so that the whole curve has the properties you want
— ...and is easy to control

3. Refinement and evaluation

— how to add detail to splines
— how to approximate them with line segments
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Spline Segments
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A spline segment

e A polynomial function over the interval [7,, f, ]

* When talking about a single segment, to keep things
simple, we assume

k=0; 1=0;, =1

— that is, the segment lives on the interval [0,1]
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Linear spline (line segment)

* Control points are the vertices

* Each segment will be a linear function P, = (x;, )
— starts at p, (when ¢t = 0)
— ends at p; (whent = 1)
— moves at constant speed along segment
— both coordinate functions are linear

pO — (x07 yO)
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Linear interpolation

e Take one coordinate, x
e |tislinear:x(t) =at+ b
— we want x(0) = xyand x(1) = x;

— this is achieved by b = xyand a = x; — x

x(t) = (x; — xp)t + x

Cornell CS4620 Fall 2020
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Three equivalent notions

x(t) = (x; — xp)t + x
= (1 — H)xy+ 1x4
= xoby(t) + x;b,(%)

b, <

b, (¢) - *
a linear polynomial with coefficients :\’
that are linear functions of x; and x;

a linear combination of the values
Xy and x;with weights (1 —7) and ¢

a linear combination of the functions
by(t) =1—rtand b(t) =t <
with weights X, and x;
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Spline matrix

* A nice generalizable way of writing this is

Xt =[t 1 [‘11 (1)] [ﬁ‘l’]
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Spline matrix

* A nice generalizable way of writing this is

Xt =[t 1 [‘11 (1)] [fjl’]

spline

, controls
matrix

monomials
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Spline matrix

* A nice generalizable way of writing this is

Xt =[t 1 [‘11 (1)] [fjl’]

monomials spIing controls
matrix
—1 1] [*o -1 1 X0
x()=1[r 1 =11 1
0 =1 ]<[1 O”x1 1T ol )
group this way to see coefficients group this way to see basis functions
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Linear 2D spline segment

* Vector formulation
x(t) = (r1 — x0)t + xg
y(t) = (y1 — o)t + Yo
f(t) = (p1 — Po)t + Po

 Matrix formulation

Cornell CS4620 Fall 2020
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Basis function formulation

(- t)
P ) b, )
b, (#) - <

}

1{{3)

Po
£(1) = by(D)py + Dy (DP,
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Hermite splines

* Less trivial example
* Form of curve: piecewise cubic
* Constraints: endpoints and tangents (derivatives)
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Hermite splines in ID

A
x, -+ °
x
X, ¥
o +—
o £ = |
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Hermite splines in ID

r(t) = at® + bt> + ct +d
r'(t) = 3at® + 2bt + ¢

R —>
b .

- T
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Hermite splines in ID

R —>
b .

/ x ()

- T

Cornell CS4620 Fall 2020

x(t) = at® + bt* + ct +d
r'(t) = 3at® + 2bt + ¢
x(0) = xg =
r(l)=x1=a+b+c+d
2'(0) =z = ¢

(1) =27 =3a+2b+c
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Hermite splines in ID

R —>
p

- T
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z(t) =a

r'(t) = 3at® + 2bt + ¢
x(0) = xg =
r(l)=x1=a+b+c+d
2'(0) =z = ¢

(1) =27 =3a+2b+c
d = xg

c = x

a=2xg— 211 + 1) + 7]

b= —3xo+ 31 — 2w) — 1]
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Hermite splines

e Matrix form is much cleaner

2 -2 1 1] [pol

— [+3 2
fe)=1[1* ¢ ¢ 1| o 1 b
10 0 0] [ti]

— coefficients = rows
— basis functions = columns
* note the two p columns sumto [0 00 I]T
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Matrix form of spline

f(t) =at’ + bt +ct +d

it 2t 1

X X X X

X X X X

X X X X

X X X X

Po
P1
P2
Ps3

f(t) = bo(t)po + b1(t)P1 + b2(t)p2 + b3(t)P3

Cornell CS4620 Fall 2020
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Matrix form of spline

f(t) =at’ + bt +ct +d

2t 1]
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Hermite splines

* Hermite blending functions

- bo(?) bi(t) —
///><\ ¢
halt) N
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Hermite to Bezier

* Mixture of points and vectors is awkward
* Specify tangents as differences of points
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Hermite to Bezier

* Mixture of points and vectors is awkward
* Specify tangents as differences of points

2 ’ .
I’'m calling these

points q just for
—t this slide and the
next one.

- )

— note derivative is defined as 3 times offset
* reason is illustrated by linear case
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Hermite to Bezier

Po = 9o
P1 = Qs
to = 3(q1 — qo)
t1 = 3(a3 — q2)

Cornell CS4620 Fall 2020

O w O O
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Hermite to Bezier

Po = 9o
P1 = q3

to = 3(d1 — qo)
t1 = 3(a3 — q2)

Qo6 T W
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-2 1 1
3 -2 -1
0 1 0
0 0 0

0
0
3
0
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Hermite to Bezier

Po = 9o
P1 = Qs
to = 3(q1 — qo)
t1 = 3(a3 — q2)

a | —1 3 -3 1] [qo
bl |3 -6 3 0| |a
cl |-3 3 0 0] |qgs
d ‘1 0 0 0] |a3]
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Bézier matrix

—1 3 -3 1 Po
3 —6 3 0| |p

— [4+3 2
f)=1[" ¢ ¢ 1| 5 & |, bo
1 0 0 0f |ps

— note that the basis functions are the Bernstein polynomials

AW n—k The p« column
bn,k’(t) — (k)t (1 o t) of the matrix
defines the
polynomial

and that defines Bezier curves for any degree ba(t)
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Bézier basis £V i

P
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Another way to Bézier segments

* A really boring spline segment: f(t) = p0
— it only has one control point

— the curve stays at that point for the whole time

* Only good for building a piecewise constant spline
— a.k.a. a set of points

Po
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Another way to Bézier segments

* A piecewise linear spline segment

— two control points per segment

— blend them with weights c and 5 =1 — a P

* Good for building a
piecewise linear spline

— a.k.a.a polygon or polyline

Po
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Another way to Bézier segments

* A piecewise linear spline segment

— two control points per segment

— blend them with weights c and 5 =1 — a P

* Good for building a
piecewise linear spline

— a.k.a.a polygon or polyline

[ N

These labels show

the weights, not s

the distances.

- )
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Another way to Bézier segments

* A linear blend of two piecewise linear segments

— three control points now

— interpolate on both segments using o and 3

— blend the results with the same weights

* makes a quadratic spline segment

— finally, a curve!

Cornell CS4620 Fall 2020

P1,0 = apo + fp1

P11 = api + Op2

P20 = ap1,0 + BP1,1
= aapg + afp1 + Bapi + 88p2
= a’pgy + 2a08p1 + 5°po
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P1

a2pg + 2afp; + f?p;

P2
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Another way to Bézier segments

e Cubic segment: blend of two quadratic segments
— four control points now (overlapping sets of 3)
— interpolate on each quadratic using a and 3
— blend the results with the same weights

* makes a cubic spline segment

— this is the familiar one for graphics—but you can keep going

P30 =aPp2,0 + BP2.1
=aaapg + aafp1 + afapr + aBBp2
Baapy + pafpsz + BBaps + B66Ps3
=o’py + 3a°Bp1 + 3a8°ps + B°ps
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a’pg + 3a26py + 3af?p, + 3p3

P3
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de Casteljau’s algorithm

* A recurrence for computing points on Bézier spline
segments:

Po,: — Pq
Pni = OPn—1,i + 5Pn—1,i+1

 Cool additional feature:
also subdivides
the segment into two
shorter ones

[FYDFH]
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Cubic Bézier splines

* Very widely used type, especially in 2D

— e.g.it is a primitive in PostScript/PDF
* Can represent smooth curves with corners
* Nice de Casteljau recurrence for evaluation
* Can easily add points at any position
* lllustrator demo
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Spline segment properties

e Convex hull property
— convex hull = smallest convex region containing points
* think of a rubber band around some pins
— some splines stay inside convex hull of control points
* make clipping, culling, picking, etc. simpler

o B ae
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Convex hull

* If basis functions are all positive, the spline has the
convex hull property

— we’'re still requiring them to sum to |

— if any basis function is ever negative, no convex hull prop.
* proof: take the other three points at the same place
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Affine invariance

* Transforming the control points is the same as
transforming the curve

— true for all commonly used splines
— extremely convenient in practice...
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Spline Curves
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Chaining spline segments

* Can only do so much with a single polynomial
* Can use these functions as segments of a longer curve

— curve from t = 0 to t = | defined by first segment
— curve from t = | to t = 2 defined by second segment

£(t) = £5(t —4) fori<t<i-+1

* To avoid discontinuity, match derivatives at junctions

— this produces a C! curve
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Continuity

* Smoothness can be described by degree of continuity
— zero-order (C0): position matches from both sides
— first-order (C!): tangent matches from both sides
— second-order (C2): curvature matches from both sides
— G vs. CN

zero order first order second order
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Continuity

* Parametric continuity (C) of spline is continuity of
coordinate functions

* Geometric continuity (G) is continuity of the curve
itself

* Neither form of continuity is guaranteed by the other
— Can be C! but not G! when p(t) comes to a halt (next slide)

— Can be G! but not C! when the tangent vector changes length
abruptly
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Geometric vs. parametric continuity

2D spline

fi— l

coordinate function y(7)

coordinate
function x(7)
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Geometric vs. parametric continuity

2D spline

fi— l

coordinate function y(7)

coordinate
function x(7)
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Control

* Local control
— changing control point only affects a limited part of spline
— without this, splines are very difficult to use
— many likely formulations lack this
* natural spline
* polynomial fits
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Trivial example: piecewise linear

* Basis function formulation:“function times point”

— basis functions: contribution of each point as t changes

0 | { |
0 1 2 3

— can think of them as blending functions glued together
— this is just like a reconstruction filter!
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Splines as reconstruction

T o 4
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Splines as reconstruction

()
9

N
O
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Seeing the basis functions

* Basis functions of a spline are revealed by how the
curve changes in response to a change in one control

— to get a graph of the basis function, start with the curve laid
out in a straight, constant-speed line

* what are x(t) and y(t)?
— then move one control straight up
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Hermite splines

* Controls are endpoints
and endpoint tangents

* Segments are chained
by sharing points and
tangents between
adjacent segments

Cornell CS4620 Fall 2020

pi+1

i+1
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Hermite basis
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Hermite basis

pi+1

i+1
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Hermite basis

pi+1

i+1

1
P, P
ti+1
0_ |
i—1 [ I+ 1 I+ 2
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Bézier basis £V i

P
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Chaining Beézier splines

* No continuity built in

* Achieve C! using collinear control points
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Chaining Beézier splines

* No continuity built in
* Achieve C! using collinear control points

P,
g
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Making long uniform splines

* Hermite curves are convenient because they can be
made long easily

* Bezier curves are convenient because their controls
are all points
— but it is fussy to maintain continuity constraints
— and they interpolate every 3rd point, which is a little odd

* We derived Bezier from Hermite by defining tangents

from control points

— a similar construction leads to the interpolating Catmull-Rom
spline
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Hermite to Catmull-Rom

* Have not yet seen any interpolating splines
* Would like to define tangents automatically

— use adjacent control points

— end tangents: extra points or zero o
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Hermite to Catmull-Rom

« Tangentsare (P, + | —Pr_) /2

— scaling based on same argument about collinear case
Po = gk

P1=q; +1
vo = 0.5(qk+1 — 9k—1)
vi = 0.5(qk+2 — 9k )

a 2 —2 1 1770 1 0 0] [qr_1]
bl |-3 3 -2 -1 0 0 1 0 qx
cl |0 O 1 0| |-5 0 5 0| |dqes1
d 1 0 0 0]]0 -5 0 .5 gk
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Catmull-Rom basis

Cornell CS4620 Fall 2020 Steve Marschner ¢ 60



Catmull-Rom basis

k-1 k k+ 1 k+2
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Catmull-Rom splines

* Our first example of an interpolating spline
* Like Bezier, equivalent to Hermite

— in fact, all splines of this form are equivalent

* First example of a spline based on just a control point
sequence

* Does not have convex hull property
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B-splines

* We may want more continuity than C|
* We may not need an interpolating spline

* B-splines are a clean, flexible way of making long splines
with arbitrary order of continuity
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Cubic B-spline basis

P ® p3

P oP
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Cubic B-spline basis

P, P,
P, /—\ " Py
P, o P;
l..
0
k-1 k k+ 1 k+2
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Deriving the B-Spline

* Approached from a different tack than Hermite-style
constraints

— Want all points and basis functions to be the same
— Want a cubic spline; therefore 4 active control points

— Want C2 continuity

— Turns out that is enough to determine everything
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Cubic B-spline matrix

—1 3 -3 1 Pi—1

113 -6 3 0 Pi

— |43 2 o ()
f;(t)= [t ¢ ¢t 1] il-s 0 3 o |pa
14 1 0] |pite]
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Cubic B-spline basis

P ® p3

P oP
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Cubic B-spline basis

P, P,
P, /—\ " Py
P, o P;
l..
0
k-1 k k+ 1 k+2
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Other types of B-splines

* Nonuniform B-splines
— discontinuities not evenly spaced

— allows control over continuity or interpolation at certain
points

— e.g.interpolate endpoints (commonly used case)

* Nonuniform Rational B-splines (NURBYS)
— ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
— key properties:
* invariance under perspective as well as affine
* ability to represent conic sections exactly
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Converting spline representations

* All the splines we have seen so far are equivalent

— all represented by spline matrices
ps(t) =T(t)MgPs

* where S represents the type of spline

— therefore the control points may be transformed from one
type to another using matrix multiplication

Py = M; *MyPy

p1(t) = T(t) M1 (M; * MyPs)
= T(t)ﬂfgpg — P2 (t)
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Refinement and Evaluation
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Refinement of splines

* May want to add more control to a curve
e Can add control by splitting a segment into two

P>
Pi 1
¢ (]
Pi
* P>
P2 5
f(t)=T(t)MP
Pi¢ fr(t) = f(st) = T(t)M Py, 1 p‘;
fr(t) =f((1 —s)t+s) =T(t)MPg
Poo
Po find left and right control points

to make the curves match!
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Evaluating by subdivision

— Recursively split spline
* stop when polygon is
within epsilon of curve

— Termination criteria

* distance between control points
* distance of control points from line
* angles in control polygon

[25)

P4

P P3
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Evaluating by subdivision

— Recursively split spline
* stop when polygon is
within epsilon of curve
— Termination criteria
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[25)

P4

P P3
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summary

* Splines are piecewise polynomials

* Coefficients (and therefore any point on the curve) are
linear functions of control point positions

* We saw 4 kinds of cubic spline curves
— Hermite: points and tangents
— Cubic Beézier: segment has 4 points, interpolates endpoints
— Catmull-Rom: tangents defined by neighboring points

— Cubic B-Spline: C? curves, each segment controlled by 4
neighboring points

All are equivalent, can describe the same curves

All can be split for refinement or adaptive display
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