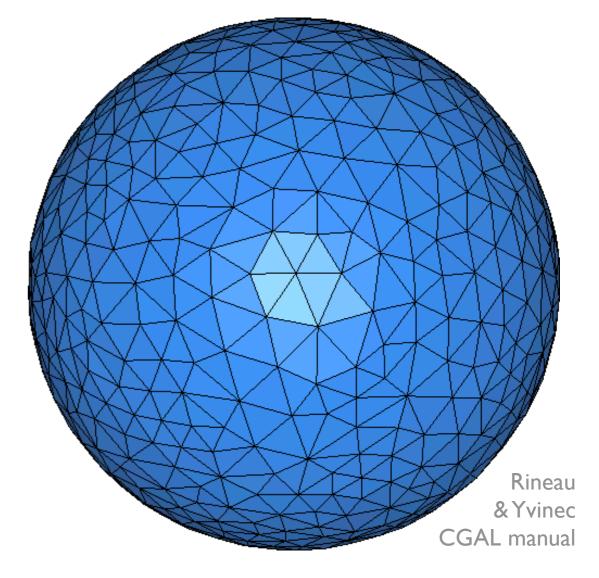
Triangle meshes

Steve Marschner CS 4620 Cornell University

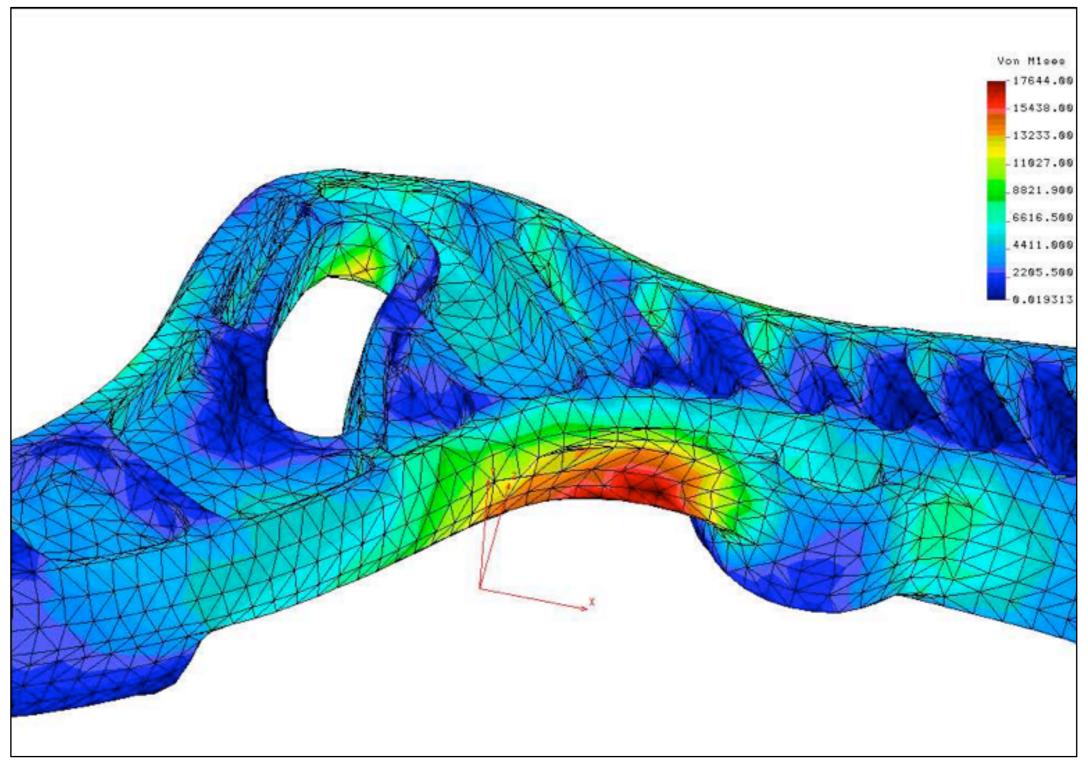
Triangle meshes

I. Meshes and mesh representation

spheres

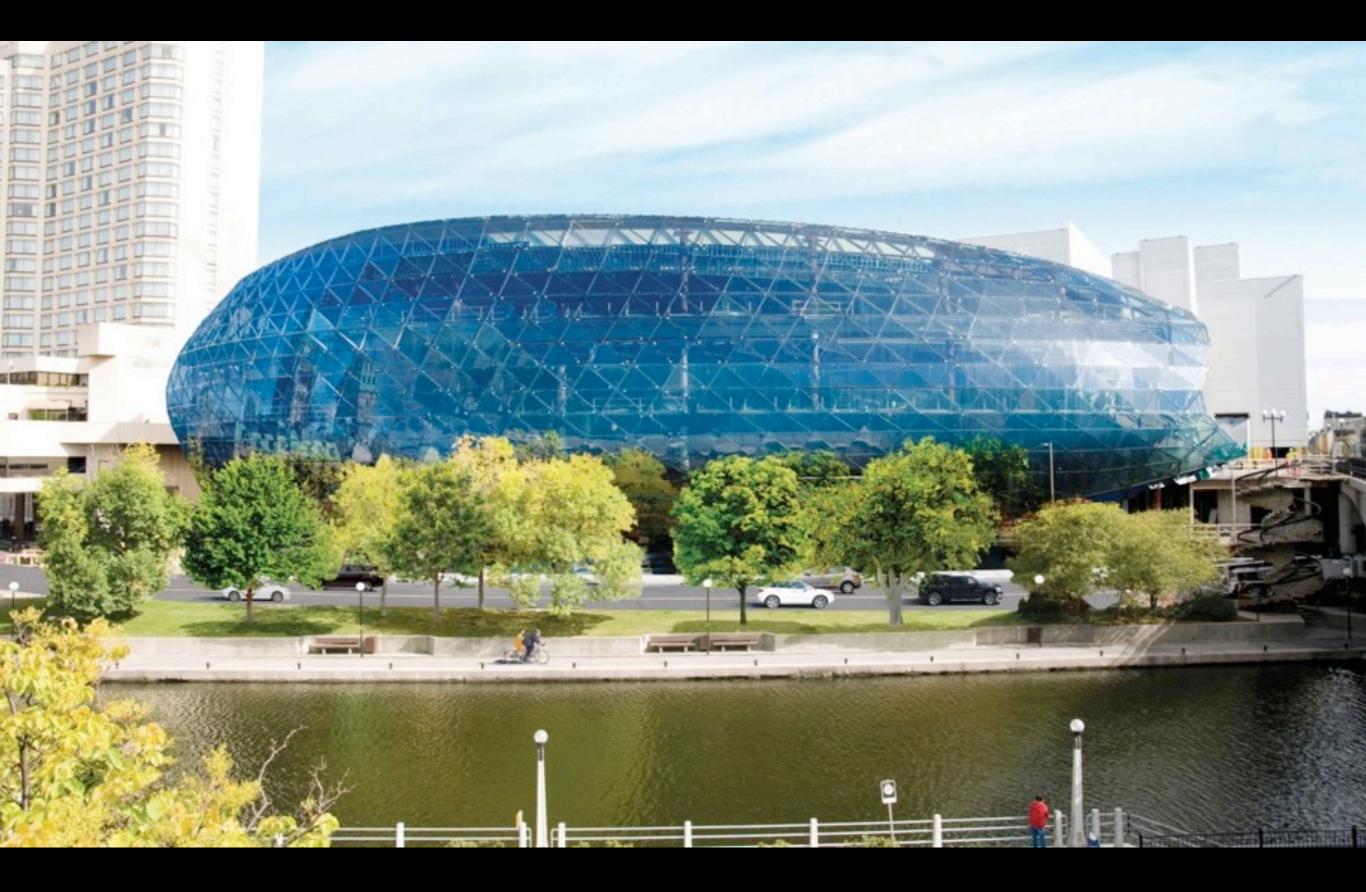


approximate sphere



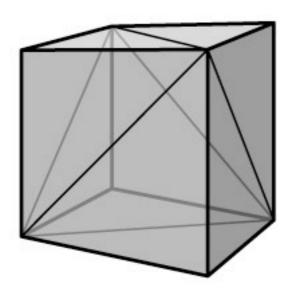
PATRIOT Engineering

finite element analysis



Ottawa Convention Center

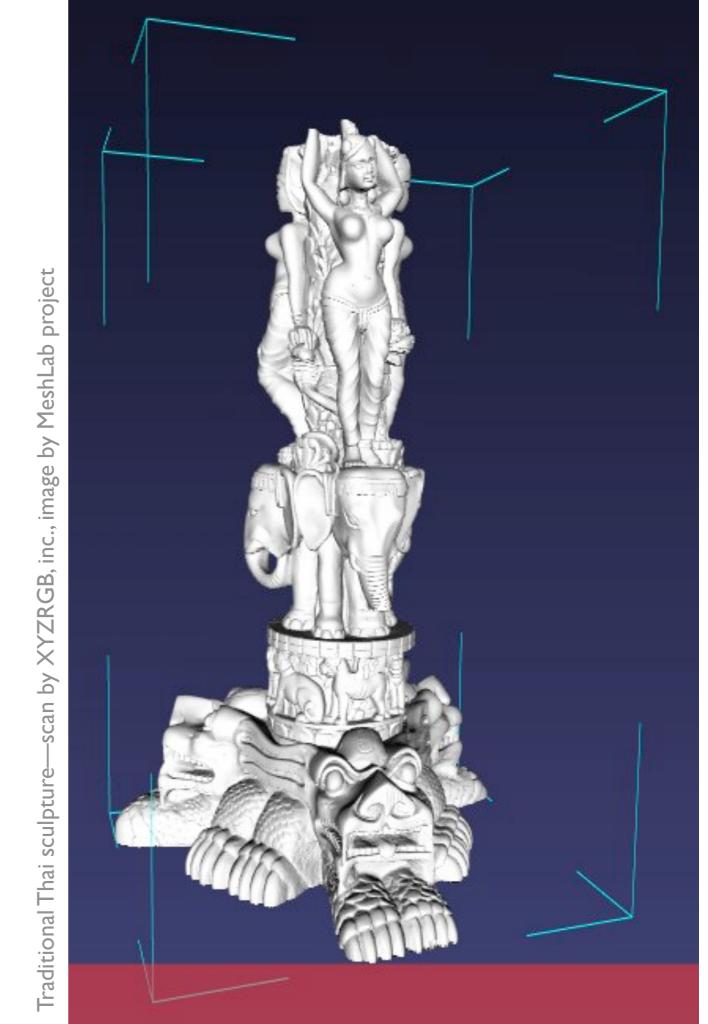
A small triangle mesh

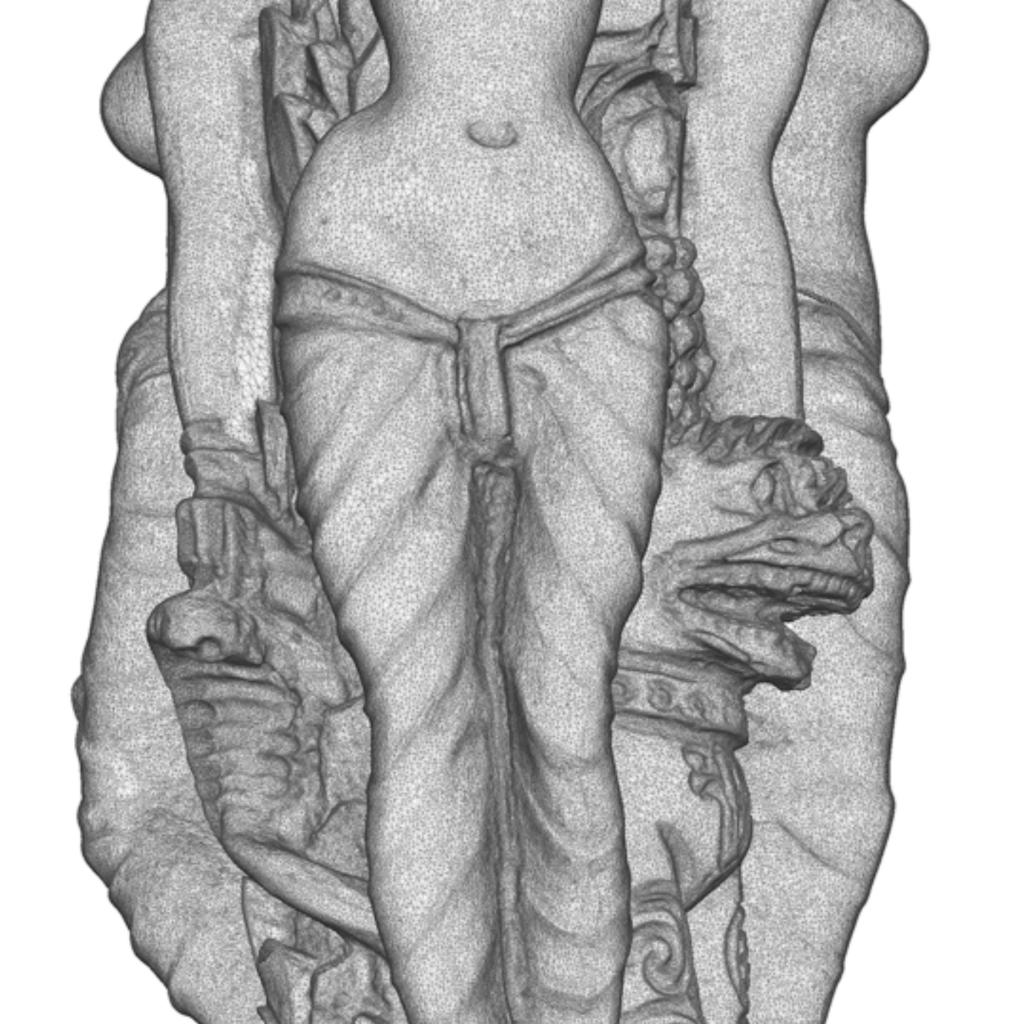


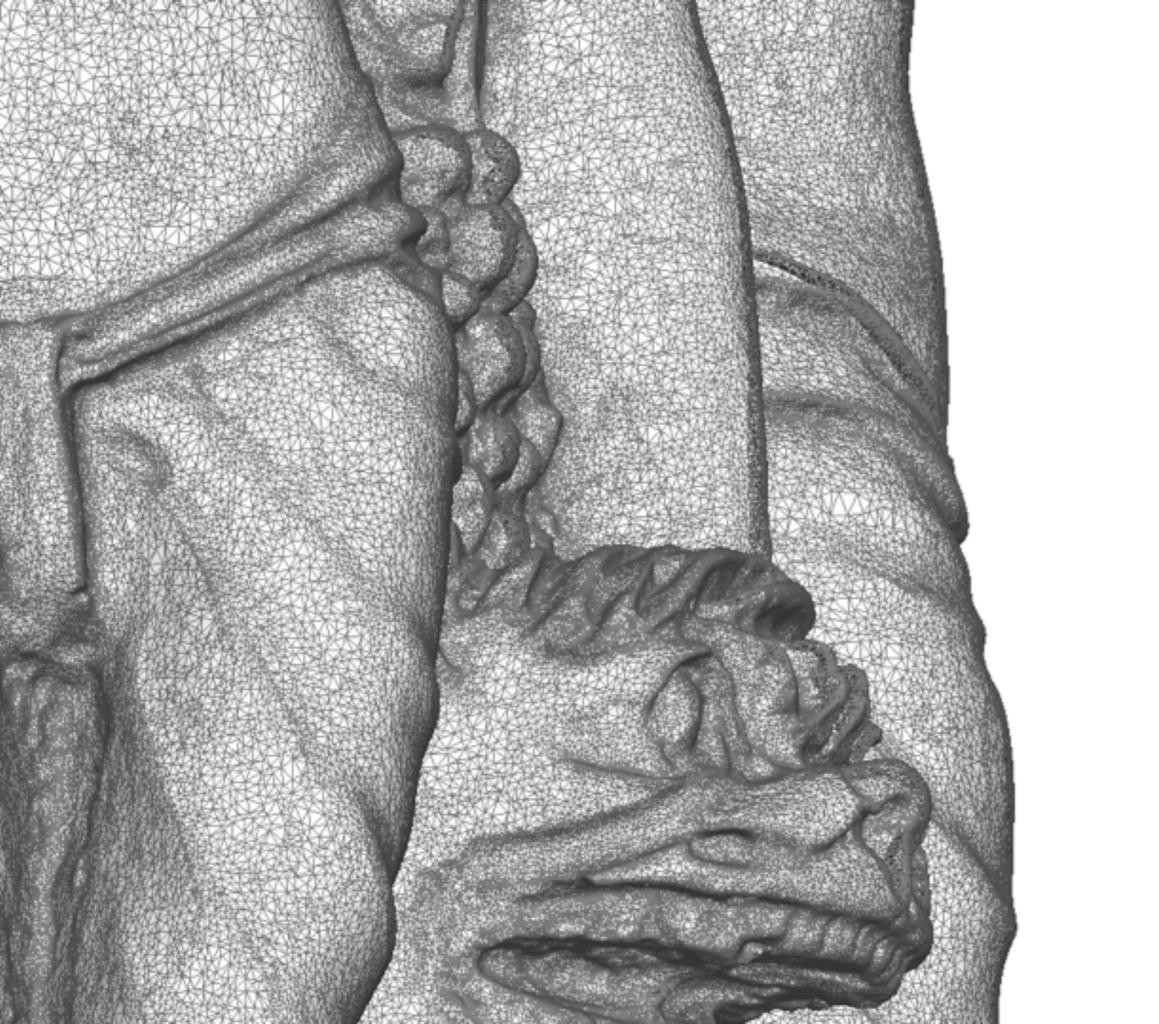
12 triangles, 8 vertices

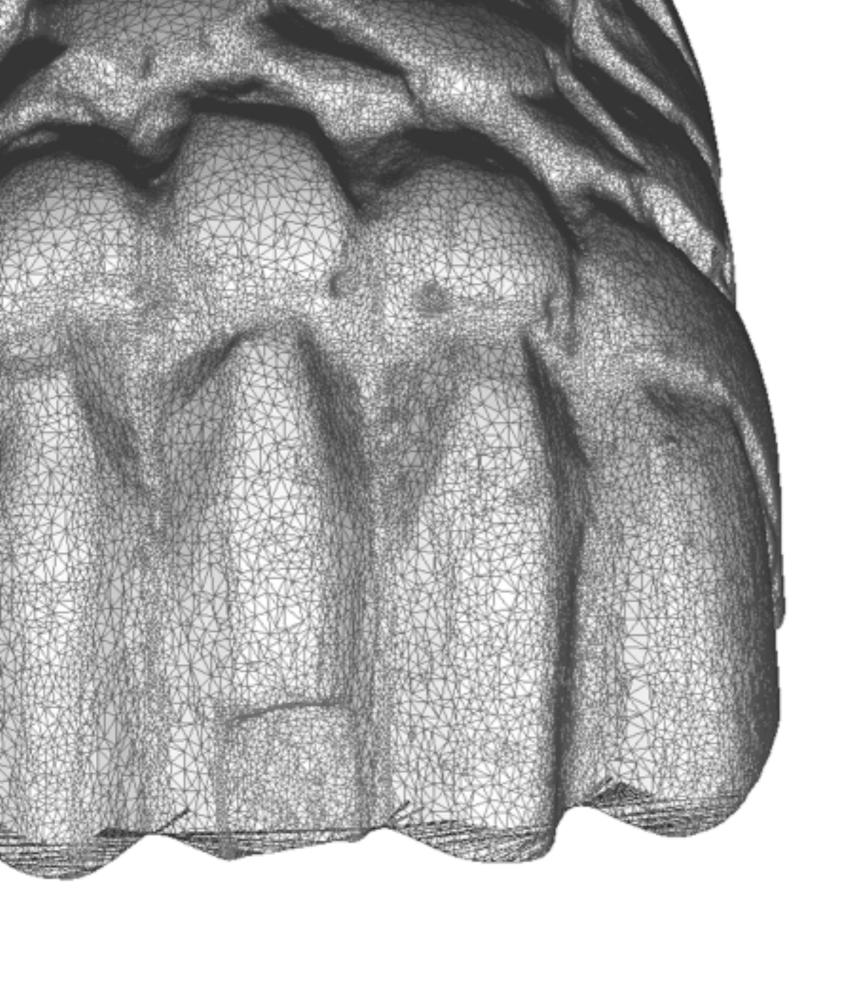
A large mesh

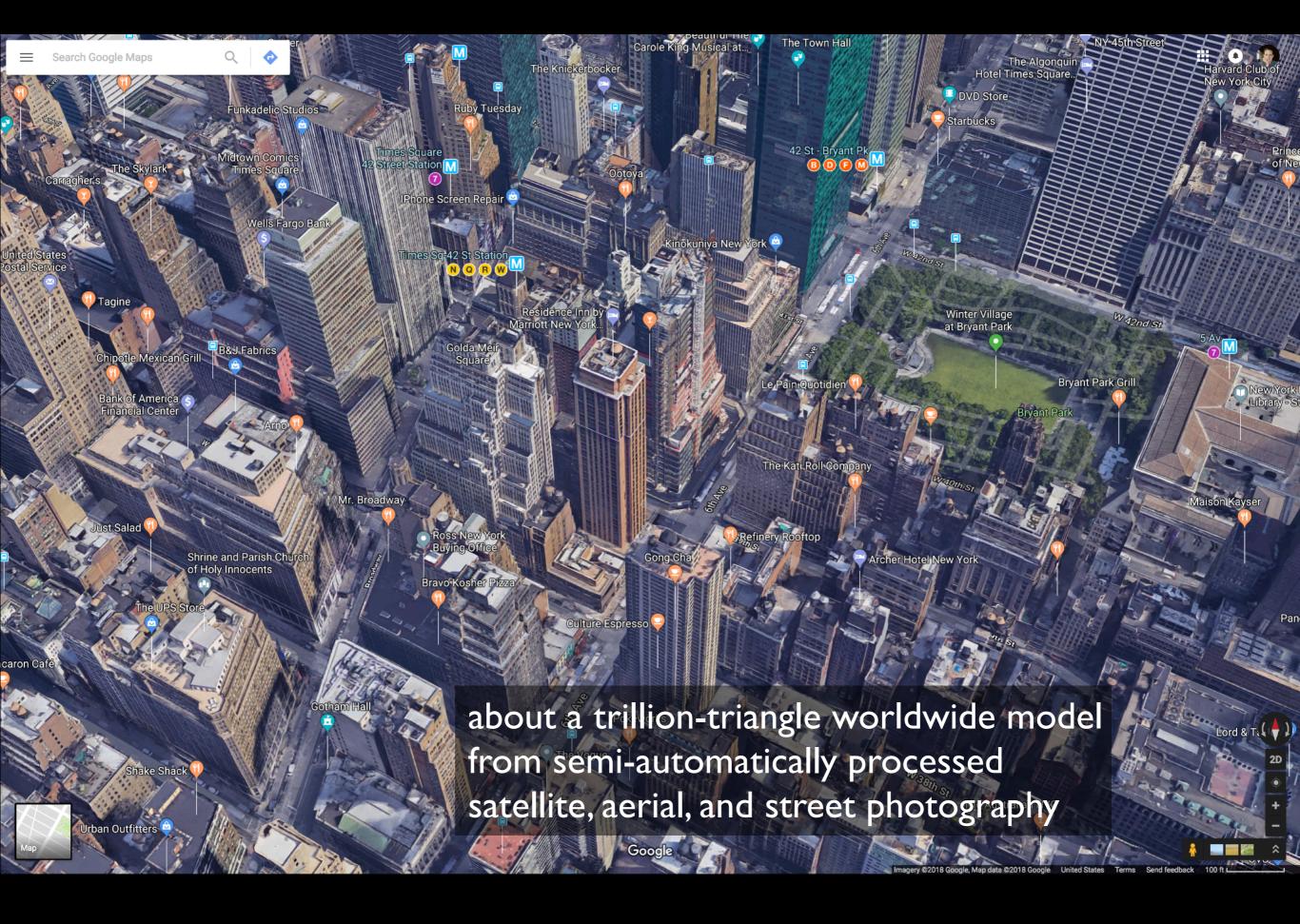
10 million trianglesfrom a high-resolution3D scan











Triangles

- Defined by three vertices
- Lives in the plane containing those vertices
- Vector normal to plane is the triangle's normal
- Conventions (for this class, not everyone agrees):
 - vertices are counter-clockwise as seen from the "outside" or "front"
 - surface normal points towards the outside ("outward facing normals")

Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface
- Geometrically, a mesh is a piecewise planar surface
 - almost everywhere, it is planar
 - exceptions are at the edges where triangles join
- Often, it's a piecewise planar approximation of a smooth surface
 - in this case the creases between triangles are artifacts—we don't want to see them

Representation of triangle meshes

Compactness

Efficiency for rendering

enumerate all triangles as triples of 3D points

Efficiency of queries

- all vertices of a triangle
- all triangles around a vertex
- neighboring triangles of a triangle
- (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing

Cornell CS4620 Fall 2020

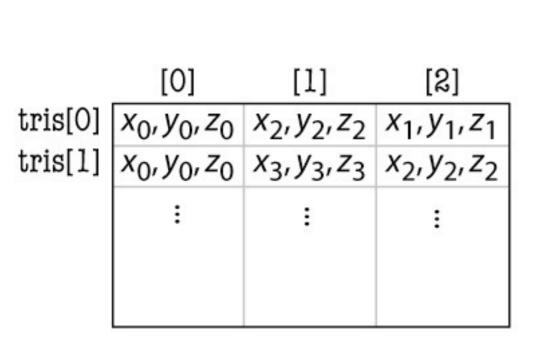
Representations for triangle meshes

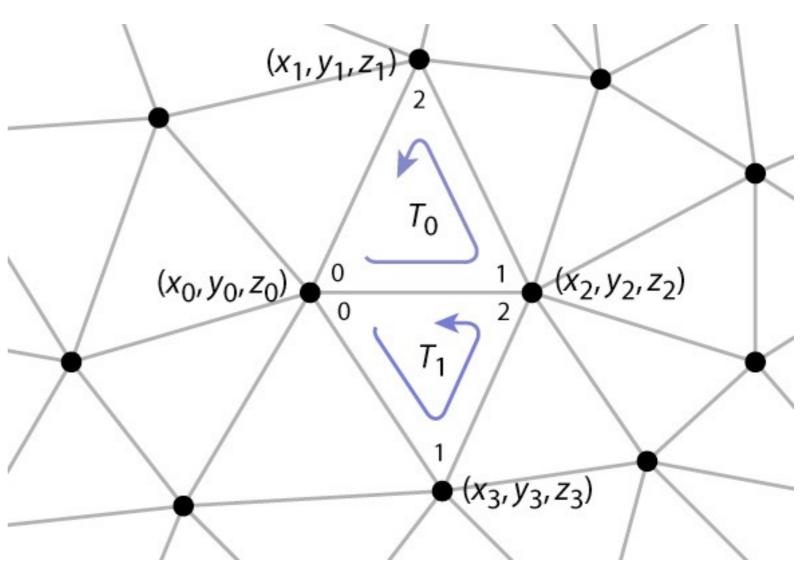
- Separate triangles
- Indexed triangle set
 - shared vertices

- crucial for rendering 2 assignment
- Triangle strips and triangle fans
 - compression schemes for fast transmission
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes

Interesting and useful but not needed for assignments

Separate triangles





Separate triangles

array of triples of points

- float $[n_T]$ [3][3]: 36 bytes per triangle
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)

various problems

- wastes space (each vertex stored 6 times)
- cracks due to roundoff
- difficulty of finding neighbors at all

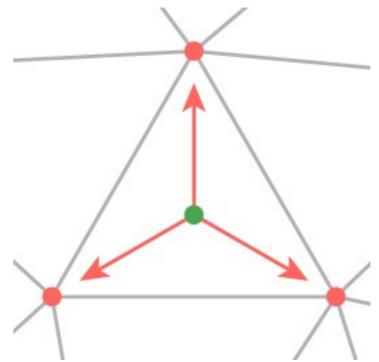
- Store each vertex once
- Each triangle points to its three vertices

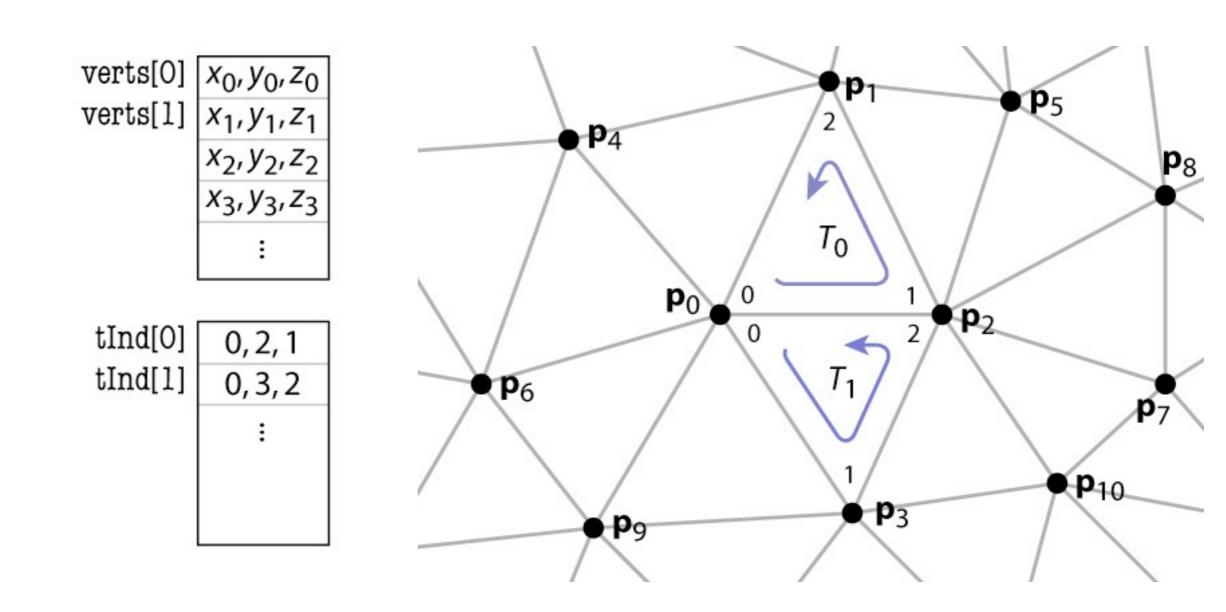
```
Triangle {
  Vertex vertex[3];
Vertex {
  float position[3]; // or other data
// ... or ...
Mesh {
  float verts[nv][3]; // vertex positions (or other data)
  int tInd[nt][3]; // vertex indices
```

Cornell CS4620 Fall 2020

- Store each vertex once
- Each triangle points to its three vertices

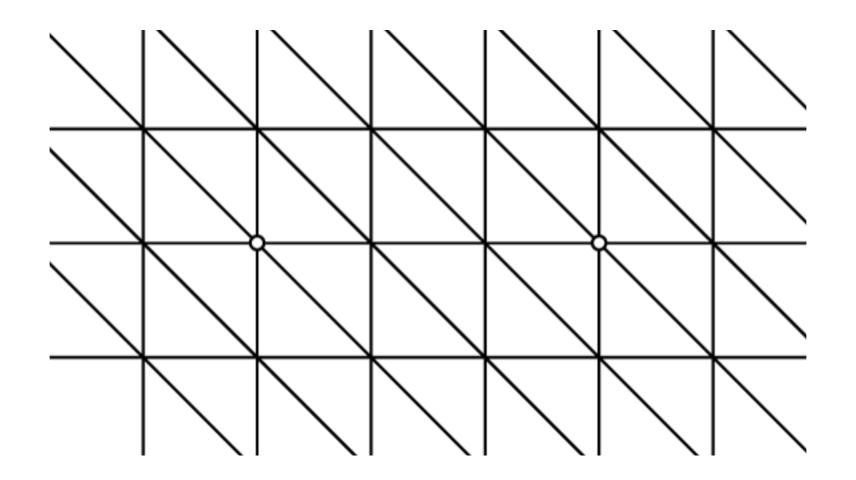
```
Triangle {
  Vertex vertex[3];
Vertex {
  float position[3]; // or other data
// ... or ...
Mesh {
  float verts[nv][3]; // vertex positions (or other data)
  int tInd[nt][3]; // vertex indices
```





Estimating storage space

- n_T = #tris; n_V = #verts; n_E = #edges
- Rule of thumb: $n_T:n_E:n_V$ is about 2:3:1



- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - $int[n_T][3]$: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
 - separate triangles: 36 bytes per triangle
- represents topology and geometry separately
- finding neighbors is at least well defined

Practical encoding of meshes

OBJ file format

- widely used format for polygon meshes in indexed form
- supports the usual attributes: position, normal, texture coordinate
- allows triangles or polygons (only triangles and quads widely supported)
- comes with a crude mechanism for adding materials

Demo

simple file with one triangle

Triangle meshes

I. Storing data at vertices

Cornell CS4620 Fall 2020

Data on meshes

- Often need to store additional information besides just the geometry
- Can store additional data at faces, vertices, or edges
- Examples
 - colors stored on faces, for faceted objects
 - information about sharp creases stored at edges
 - any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices

Key types of vertex data

Surface normals

- when a mesh is approximating a curved surface, store normals at vertices

Surface parameterizations aka. texture coordinates

- providing a 2D coordinate system on the surface

Positions

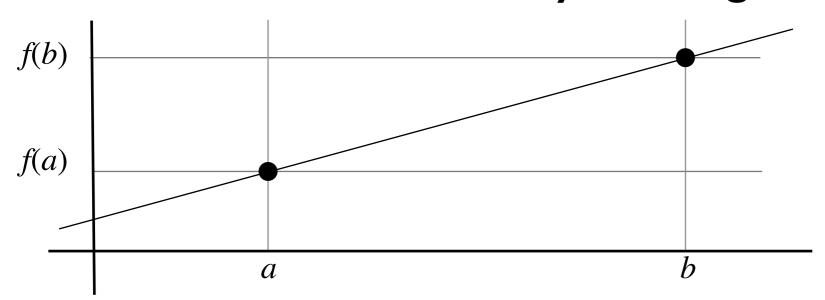
- at some level this is just another piece of data
- position varies continuously between vertices

Vertex data defines a continuous function on the mesh surface

quantities are defined in triangle interiors via linear interpolation

Linear interpolation, ID domain

 Given values of a function f(x) for two values of x, you can define in-between values by drawing a line



See textbook Sec. 2.6

- there is a unique line through the two points
- can write down using slopes, intercepts
- ...or as a value added to f(a)
- ...or as a convex combination of f(a) and f(b)

$$f(x) = f(a) + \frac{x - a}{b - a}(f(b) - f(a))$$
$$= (1 - \beta)f(a) + \beta f(b)$$
$$= \alpha f(a) + \beta f(b)$$

Linear interpolation in ID

Alternate story

I. write x as convex combination of a and b

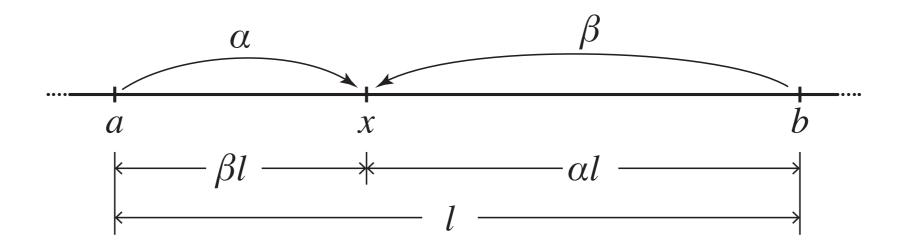
$$x = \alpha a + \beta b$$
 where $\alpha + \beta = 1$

2. use the same weights to compute f(x) as a convex combination of f(a) and f(b)

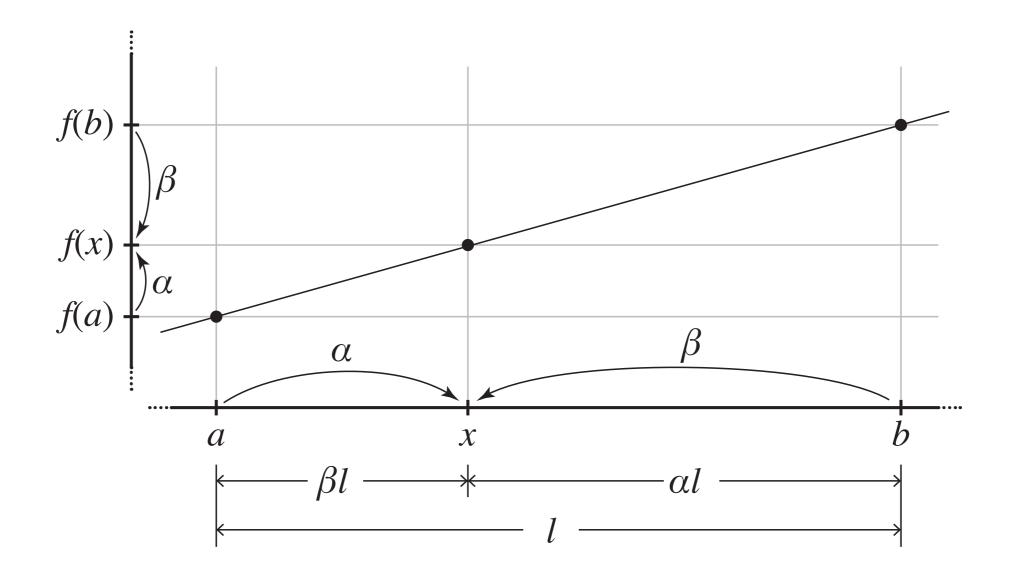
$$f(x) = \alpha f(a) + \beta f(b)$$

Cornell CS4620 Fall 2020

Linear interpolation in ID



Linear interpolation in ID



Linear interpolation in 2D

Use the alternate story:

1. Write **x**, the point where you want a value, as a convex linear combination of the vertices

$$\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$
 where $\alpha + \beta + \gamma = 1$

2. Use the same weights to compute the interpolated value $f(\mathbf{x})$ from the values at the vertices, $f(\mathbf{a})$, $f(\mathbf{b})$, and $f(\mathbf{c})$

$$f(\mathbf{x}) = \alpha f(\mathbf{a}) + \beta f(\mathbf{b}) + \gamma f(\mathbf{c})$$

See textbook Sec. 2.7

Interpolation in ray tracing

- When values are stored at vertices, use linear (barycentric) interpolation to define values across the whole surface that:
 - I. ... match the values at the vertices
 - 2. ... are continuous across edges
 - 3. . . . are piecewise linear (linear over each triangle) as a function of 3D position, not screen position—more later
- How to compute interpolated values
 - 4. during triangle intersection compute barycentric coords
 - 5. use barycentric coords to average attributes given at vertices

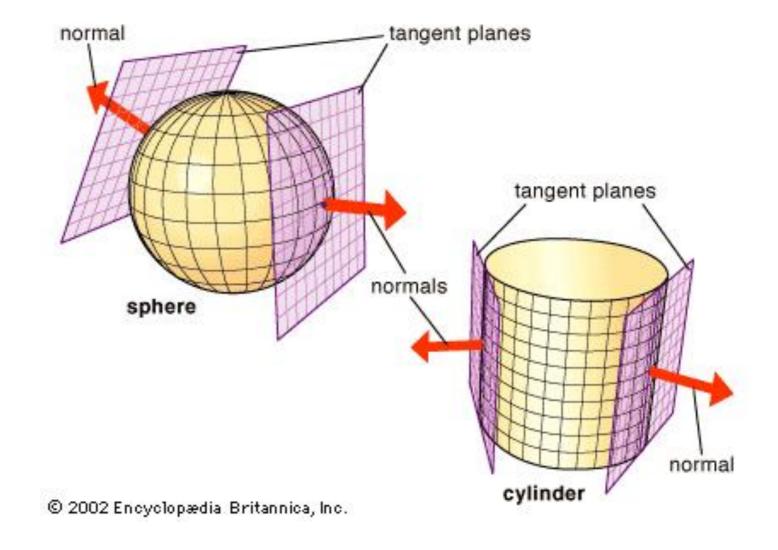
Differential geometry 101

Tangent plane

 at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the tangent plane

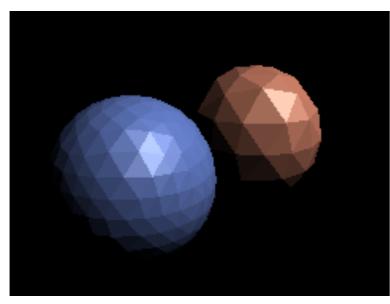
Normal vector

- vector perpendicular to a surface (that is, to the tangent plane)
- only unique for smooth surfaces (not at corners, edges)

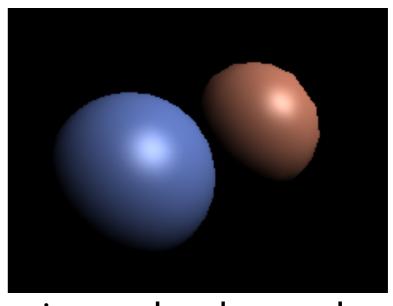


Surface normals on meshes

- For smooth surfaces approximated with meshes
- Use interpolated normal for shading in place of actual normal
 - "shading normal" vs. "geometric normal"



geometric normals



interpolated normals

How to think about vertex normals

- Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases
 - for mathematicians: error is $O(h^2)$
- But the surface normals don't converge so well
 - normal is constant over each triangle, with discontinuous jumps across edges
 - for mathematicians: error is only O(h)

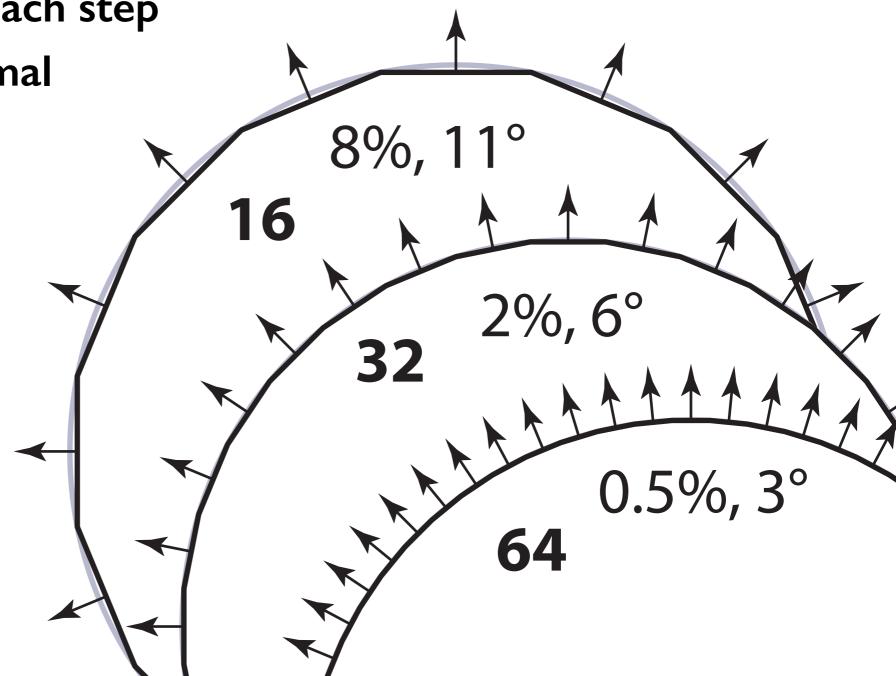
Interpolated normals—2D example

Approximating circle with increasingly many segments

 Max error in position error drops by factor of 4 at each step

 Max error in normal only drops

by factor of 2



How to think about vertex normals

- Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases
 - for mathematicians: error is $O(h^2)$
- But the surface normals don't converge so well
 - normal is constant over each triangle, with discontinuous jumps across edges
 - for mathematicians: error is only O(h)

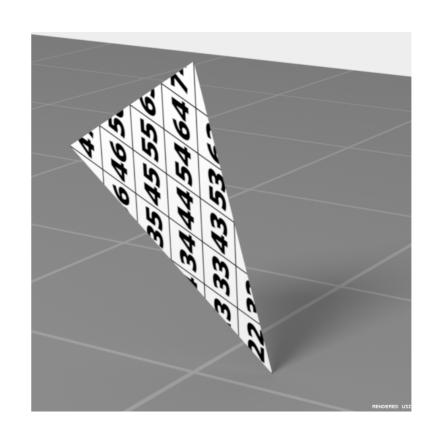
How to think about vertex normals

- Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases
 - for mathematicians: error is $O(h^2)$
- But the surface normals don't converge so well
 - normal is constant over each triangle, with discontinuous jumps across edges
 - for mathematicians: error is only O(h)
- Better: store the "real" normal at each vertex, and interpolate to get normals that vary gradually across triangles

Texture coordinates on meshes

- Texture coordinates are per-vertex data like vertex positions
 - can think of them as a second position: each vertex has a position in 3D space and in 2D texture space
- Interpolation defines (u,v)s for points inside triangles

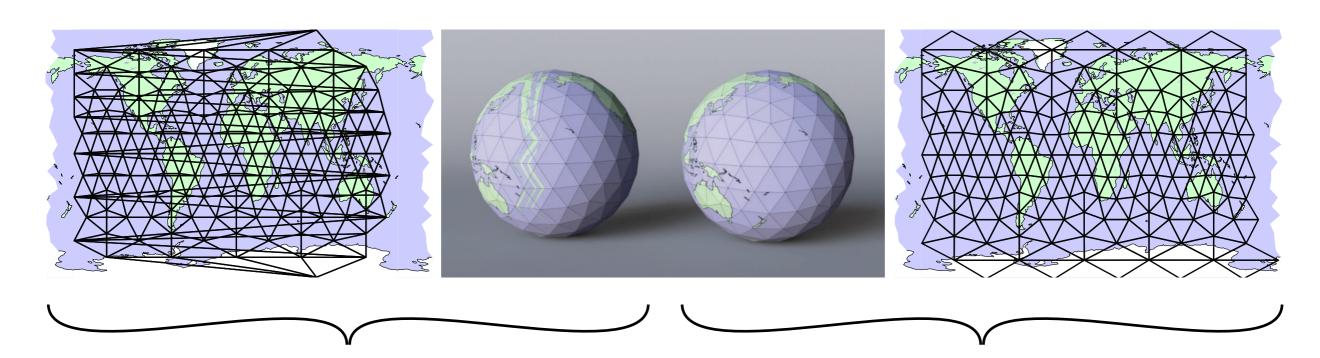
09	19	29	39	49	59	69	79	89	99
08	18	28	38	48	58	68	78	88	98
07	17	27	37	47	57	67	77	87	97
06	16	26	36	46	36	66	76	86	96
05	15	25	B 5	45	55	92	75	85	95
04	14	24	34	44	54	64	X	84	94
03	13	2/3	33	43	53	63	73	83	93
02	12	22	32	42	52	62	72	82	92
01	11	21	31	41	51	61	71	81	91
00	10	20	30	40	50	60	70	80	90



Discontinuities in texture coordinates

Sometimes textures are supposed to wrap around objects

- can do this with a tileable texture
- texture coordinate needs to jump to the next repeat at some point



Texture coordinates at each vertex set to latitude and longitude. Mesh connected continuously everywhere. Result: triangles across longitude seam (international date line) stretch across the whole map.

Vertices near seam duplicated; copies have longitudes differing by 360 degrees. Mesh is not connected across this seam. Result: *u* coordinate discontinuous across seam, but due to texture wrapping, texture is continuous.

Practical encoding of mesh attributes

OBJ file format

- supports specifying normals and texture coordinates at vertices
- particularly flexible about continuity of attributes

Demo

- simple file with one triangle
- effects of normals and texture coords
- exploration of continuity and discontinuity