

Convolution

Steve Marschner
CS 4620
Cornell University

Linear, shift-invariant filters

- A fundamental kind of image processing operation
- Linear: preserves summation and scalar multiplication

$$f(I_1 + I_2) = f(I_1) + f(I_2)$$

$$f(aI) = af(I)$$

- Shift-invariant: commutes with shifting the image

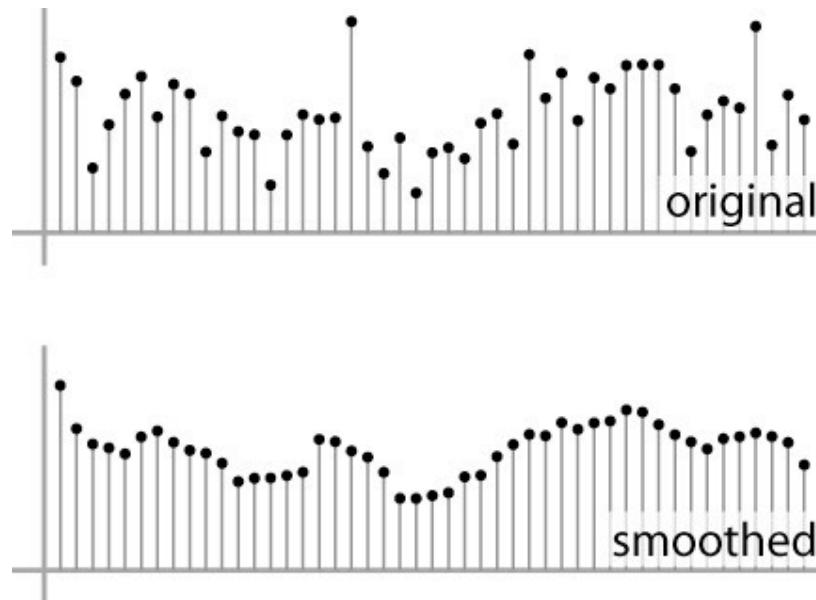
$$f(s_{\Delta x, \Delta y}(I)) = s_{\Delta x, \Delta y}(f(I))$$

(i.e. filter does the same thing at different places in the image)

- Surprisingly, all such operations can be computed with one simple algorithm: **convolution**

Convolution warm-up

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



Convolution warm-up

- Same moving average operation, expressed mathematically:

$$c[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} a[j].$$

Discrete convolution

- Simple averaging:

$$c[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} a[j].$$

every sample gets the same weight

- Convolution: same idea but with **weighted** average

$$(a \star b)[i] = \sum_j a[j]b[i-j].$$

each sample gets its own weight (normally zero far away)

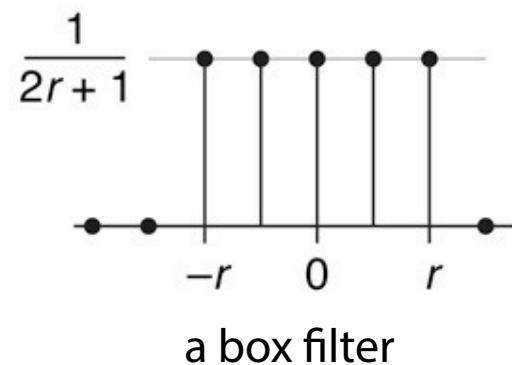
- Visually: reflect b and slide it over so that $b[0]$ lines up with $a[j]$
- This is all convolution is: it is a **moving weighted average**

And in pseudocode...

```
function convolve(sequence a, sequence b, int r, int i)
    s = 0
    for j = -r to r
        s = s + a[j]b[i - j]
    return s
```

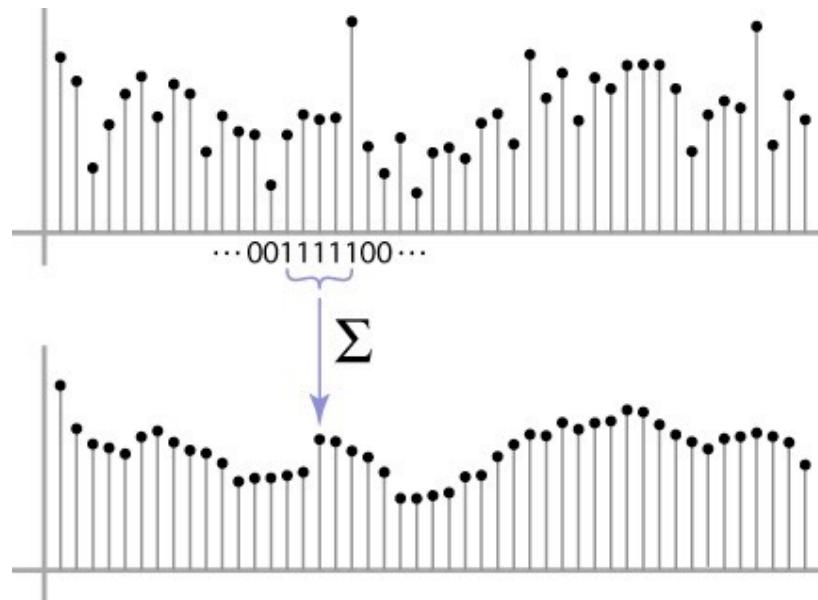
Filters

- Sequence of weights b is called a *filter*
- Filter is nonzero over its *region of support*
usually centered on zero: support radius r
- Filter is *normalized* so that it sums to 1.0
this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
since for images we usually want to treat left and right the same

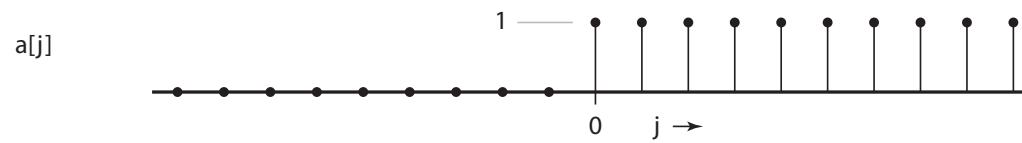
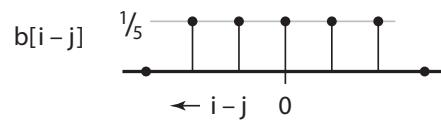


Convolution and filtering

- Can express sliding average as convolution with a *box filter*
- $b_{\text{box}} = [\dots, 0, 1, 1, 1, 1, 1, 0, \dots]/5$

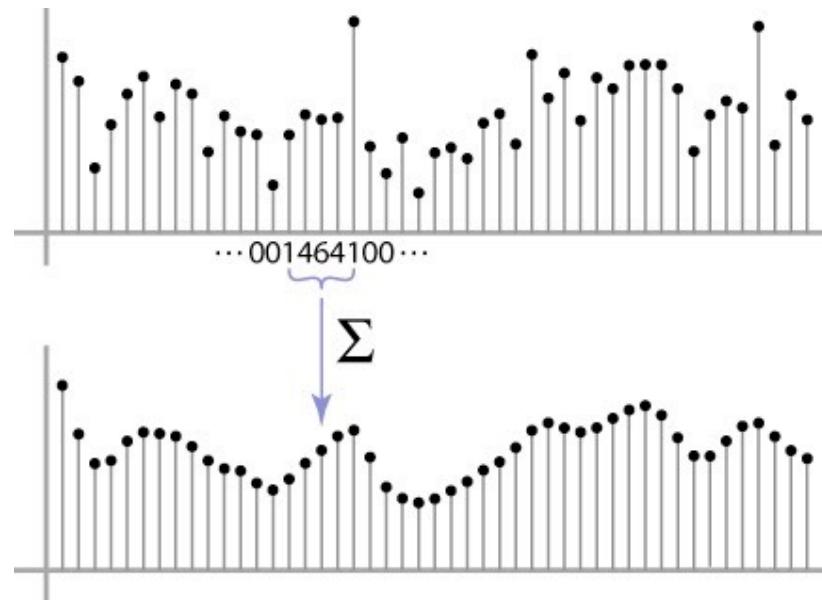


Example: box and step



Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) $[..., 1, 4, 6, 4, 1, ...]/16$



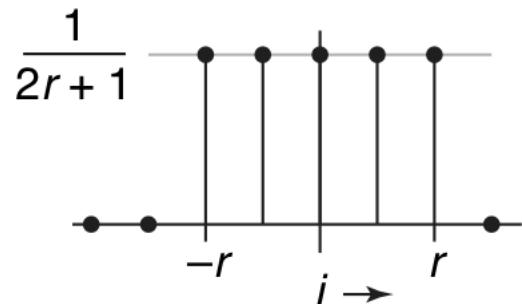
Discrete convolution

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b + c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha(a \star b)$
 - identity: unit impulse $e = [\dots, 0, 0, 1, 0, 0, \dots]$
$$a \star e = a$$
- Conceptually no distinction between filter and signal

Some useful filters

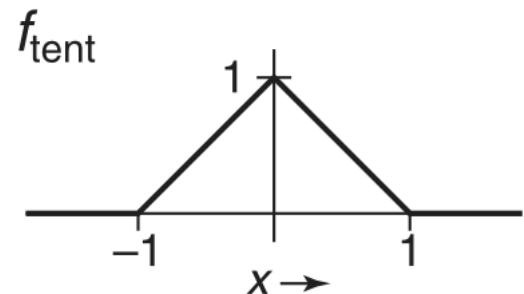
Box:

$$a_{\text{box}, r}[i] = \begin{cases} 1/(2r+1) & |i| \leq r, \\ 0 & \text{otherwise.} \end{cases}$$



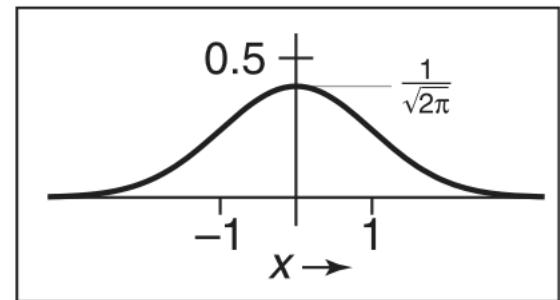
Tent:

$$f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise;} \end{cases}$$



Gaussian:

$$f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$



Discretizing filters

- A filter is usually written down as a continuous function
- This function is sampled to get the filter weights
(the box was an exception)
- It is useful to scale filters to change their size
- It is necessary to trim infinite filters (e.g. gaussian) to represent them
- Typical approach: 2 parameters, radius r and scale s (names vary)

$$b[i] = \begin{cases} \frac{f(i/s)}{\sum_{i=-r}^r f(i/s)} & i \leq r \\ 0 & \text{otherwise} \end{cases}$$

Discrete filtering in 2D

- Same equation, one more index

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j'] b[i - i', j - j']$$

now the filter is a rectangle you slide around over a grid of numbers

- Commonly applied to images

blurring (using box, using gaussian, ...)

sharpening (impulse minus blur)

feature detection (edges, corners, ...)

in convolutional neural networks (CNNs)

- Usefulness of associativity

often apply several filters one after another: $((a * b_1) * b_2) * b_3$

this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

And in pseudocode...

```
function convolve2d(filter2d a, filter2d b, int i, int j)
    s = 0
    r = a.radius
    for  $i' = -r$  to  $r$  do
        for  $j' = -r$  to  $r$  do
             $s = s + a[i'][j']b[i - i'][j - j']$ 
    return s
```

Building 2D filters

- Almost always, we build 2D filters from 1D filters like this:

$$a_2[i, j] = a_1[i]a_1[j]$$

- This is called a “separable” filter

[Philip Greenspun]

original ▲ | ▼ box blur

sharpened ▲ | ▼ gaussian blur

Optimization: separable filters

- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: $a_2[i, j]$ is *separable* if it can be written as:

$$a_2[i, j] = a_1[i]a_1[j]$$

this is a useful property for filters because it allows factoring:

$$\begin{aligned}(a_2 \star b)[i, j] &= \sum_{i'} \sum_{j'} a_2[i', j']b[i - i', j - j'] \\ &= \sum_{i'} \sum_{j'} a_1[i']a_1[j']b[i - i', j - j'] \\ &= \sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j']b[i - i', j - j'] \right)\end{aligned}$$

Separable filtering

$$a_2[i, j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

=

0	0	0	0	0
0	0	0	0	0
1	4	6	4	1
0	0	0	0	0
0	0	0	0	0

*

0	0	1	0	0
0	0	4	0	0
0	0	6	0	0
0	0	4	0	0
0	0	1	0	0

second, convolve with this

first, convolve with this

$$\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j'] b[i - i', j - j'] \right)$$

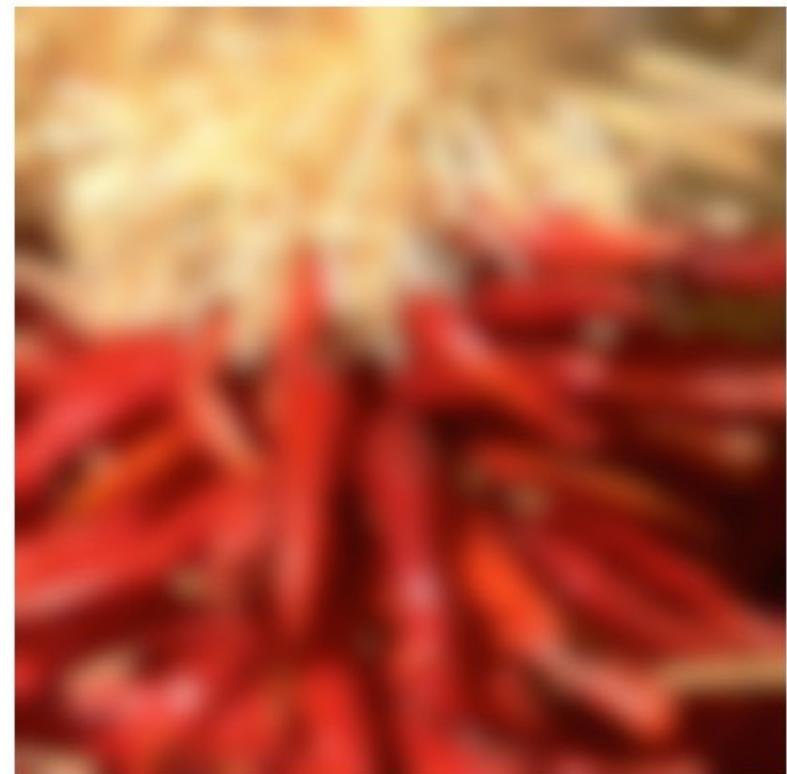
Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge
- vary filter near edge



[Philip Greenspun]