
Lecture 3 • Cornell CS4620 Fall 2020

Convolution

Steve Marschner
CS 4620

Cornell University

1

Lecture 3 • Cornell CS4620 Fall 2020

Linear, shift-invariant filters

• A fundamental kind of image processing operation

• Linear: preserves summation and scalar multiplication

• Shift-invariant: commutes with shifting the image

(i.e. filter does the same thing at different places in the image)

• Surprisingly, all such operations can be computed with one simple
algorithm: convolution

f(I1 + I2) = f(I1) + f(I2)
f(aI) = af(I)

f(sΔx,Δy(I)) = sΔx,Δy(f(I))

2

Lecture 3 • Cornell CS4620 Fall 2020

Convolution warm-up

• basic idea: define a new function by averaging over a sliding window

• a simple example to start off: smoothing

3

Lecture 3 • Cornell CS4620 Fall 2020

Convolution warm-up

• Same moving average operation, expressed mathematically:

4

i
i

i
i

i
i

i
i

190 9. Signal Processing

Figure 9.3. Smoothing using a moving average.

9.2.1 Moving Averages

To get a basic picture of convolution, consider the example of smoothing a 1D
function using a moving average (Figure 9.3). To get a smoothed value at any
point, we compute the average of the function over a range extending a distance
r in each direction. The distance r, called the radius of the smoothing operation,
is a parameter that controls how much smoothing happens.

We can state this idea mathematically for discrete or continuous functions. If
we’re smoothing a continuous function g(x), averaging means integrating g over
an interval and then dividing by the length of the interval:

h(x) =
1

2r

Z x+r

x�r
g(t) dt.

On the other hand, if we’re smoothing a discrete function a[i], averaging means
summing a for a range of indices and dividing by the number of values:

c[i] =
1

2r + 1

i+rX

j=i�r

a[j]. (9.1)

In each case, the normalization constant is chosen so that if we smooth a constant
function the result will be the same function.

This idea of a moving average is the essence of convolution; the only differ-
ence is that in convolution the moving average is a weighted average.

9.2.2 Discrete Convolution

We will start with the most concrete case of convolution: convolving a discrete
sequence a[i] with another discrete sequence b[i]. The result is a discrete sequence
(a ? b)[i]. The process is just like smoothing a with a moving average, but this

Lecture 3 • Cornell CS4620 Fall 2020

Discrete convolution

• Simple averaging:

every sample gets the same weight

• Convolution: same idea but with weighted average

each sample gets its own weight (normally zero far away)

• Visually: reflect b and slide it over so that b[0] lines up with a[j]

• This is all convolution is: it is a moving weighted average

5

i
i

i
i

i
i

i
i

190 9. Signal Processing

Figure 9.3. Smoothing using a moving average.

9.2.1 Moving Averages

To get a basic picture of convolution, consider the example of smoothing a 1D
function using a moving average (Figure 9.3). To get a smoothed value at any
point, we compute the average of the function over a range extending a distance
r in each direction. The distance r, called the radius of the smoothing operation,
is a parameter that controls how much smoothing happens.

We can state this idea mathematically for discrete or continuous functions. If
we’re smoothing a continuous function g(x), averaging means integrating g over
an interval and then dividing by the length of the interval:

h(x) =
1

2r

Z x+r

x�r
g(t) dt.

On the other hand, if we’re smoothing a discrete function a[i], averaging means
summing a for a range of indices and dividing by the number of values:

c[i] =
1

2r + 1

i+rX

j=i�r

a[j]. (9.1)

In each case, the normalization constant is chosen so that if we smooth a constant
function the result will be the same function.

This idea of a moving average is the essence of convolution; the only differ-
ence is that in convolution the moving average is a weighted average.

9.2.2 Discrete Convolution

We will start with the most concrete case of convolution: convolving a discrete
sequence a[i] with another discrete sequence b[i]. The result is a discrete sequence
(a ? b)[i]. The process is just like smoothing a with a moving average, but this

i
i

i
i

i
i

i
i

9.2. Convolution 191

Y

0 0 1 4 6 4 1 0 0 ……

a

b =

a
 b

× 1
16

Figure 9.4. Computing one value in the discrete convolution of a sequence a with a filter b
that has support five samples wide. Each sample in a ? b is an average of nearby samples
in a, weighted by the values of b.

time instead of equally weighting all samples within a distance r, we use a second
sequence b to give a weight to each sample (Figure 9.4). The value b[i� j] gives
the weight for the sample at position j, which is at a distance i � j from the
index i where we are evaluating the convolution. Here is the definition of (a ? b),
expressed as a formula:

(a ? b)[i] =
X

j

a[j]b[i� j]. (9.2)

By omitting bounds on j, we indicate that this sum runs over all integers (that
is, from �1 to +1). Figure 9.4 illustrates how one output sample is com-
puted, using the example of b = 1

16 [. . . , 0, 1, 4, 6, 4, 1, 0, . . .]—that is, b[0] = 6
16 ,

a[±1] = 4
16 , etc.

In graphics, one of the two functions will usually have finite support (as does
the example in Figure 9.4), which means that it is non-zero only over a finite
interval of argument values. If we assume that b has finite support, there is some
radius r such that b[k] = 0 whenever |k| > r. In that case, we can write the sum

Lecture 3 • Cornell CS4620 Fall 2020

And in pseudocode…

6

Lecture 3 • Cornell CS4620 Fall 2020

Filters

• Sequence of weights b is called a filter

• Filter is nonzero over its region of support
usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0
this makes for a weighted average, not just any

old weighted sum

• Most filters are symmetric about 0
since for images we usually want to treat

left and right the same

a box filter

7

Lecture 3 • Cornell CS4620 Fall 2020

Convolution and filtering

• Can express sliding average as convolution with a box filter

• bbox = […, 0, 1, 1, 1, 1, 1, 0, …]/5

8

Lecture 3 • Cornell CS4620 Fall 2020

i
i

i
i

i
i

i
i

9.2. Convolution 193

1

1

0
0.6

1
5/ 1

5/

1
5/

0 0 0 0 0 0 0 0 .2 .2 .2 .2 .2 0

0 0 0 .2 .2 .2 0

a[j]

b[i – j]

a[j]b[i – j]

b[i – j]

a[j]b[i – j]

(a b)[i]

×

=

×

==

×
YY

Y

0

0

0 0

0 6–7

j

i

i – j i – j

i – j

Figure 9.6. Discrete convolution of a box function with a step function.

What is the result of convolving a and b? At a particular index i, as shown in
Figure ??, the result is the average of the step function over the range from i� 2
to i + 2. If i < �2, we are averaging all zeros and the result is zero. If i � 2,
we are averaging all ones and the result is one. In between there are i + 3 ones,
resulting in the value i+3

5 . The output is a linear ramp that goes from 0 to 1 over
five samples: 1

5 [. . . , 0, 0, 1, 2, 3, 4, 5, 5, . . .]. ⇤

Properties of Convolution

The way we’ve written it so far, convolution seems like an asymmetric operation:
a is the sequence we’re smoothing, and b provides the weights. But one of the nice
properties of convolution is that it actually doesn’t make any difference which is
which: the filter and the signal are interchangeable. To see this, just rethink the
sum in Equation 9.2 with the indices counting from the origin of the filter b, rather

Example: box and step

9

Lecture 3 • Cornell CS4620 Fall 2020

Convolution and filtering

• Convolution applies with any sequence of weights

• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16

10

Lecture 3 • Cornell CS4620 Fall 2020

Discrete convolution

• Notation:

• Convolution is a multiplication-like operation
commutative

associative

distributes over addition

scalars factor out

identity: unit impulse e = […, 0, 0, 1, 0, 0, …]

• Conceptually no distinction between filter and signal

11

Lecture 3 • Cornell CS4620 Fall 2020

Some useful filters

12

Box:

Tent:

Gaussian:

Lecture 3 • Cornell CS4620 Fall 2020

Discretizing filters

• A filter is usually written down as a continuous function

• This function is sampled to get the filter weights
(the box was an exception)

• It is useful to scale filters to change their size

• It is necessary to trim infinite filters (e.g. gaussian) to represent them

• Typical approach: 2 parameters, radius and scale (names vary) r s

b[i] =
f(i/s)

∑r
i=−r f(i/s)

i ≤ r

0 otherwise

13

Lecture 3 • Cornell CS4620 Fall 2020

Discrete filtering in 2D

• Same equation, one more index

now the filter is a rectangle you slide around over a grid of numbers

• Commonly applied to images
blurring (using box, using gaussian, …)

sharpening (impulse minus blur)

feature detection (edges, corners, …)

in convolutional neural networks (CNNs)

• Usefulness of associativity
often apply several filters one after another: (((a * b1) * b2) * b3)

this is equivalent to applying one filter: a * (b1 * b2 * b3)

14

Lecture 3 • Cornell CS4620 Fall 2020

And in pseudocode…

15

Lecture 3 • Cornell CS4620 Fall 2020

Building 2D filters

• Almost always, we build 2D filters from 1D filters like this:

• This is called a “separable” filter

a2[i, j] = a1[i]a1[j]

16

Lecture 3 • Cornell CS4620 Fall 2020

original | box blur sharpened | gaussian blur
[Philip Greenspun]

17

Lecture 3 • Cornell CS4620 Fall 2020

Optimization: separable filters

• basic alg. is : large filters get expensive fast!

• definition: is separable if it can be written as:

this is a useful property for filters because it allows factoring:

O(r2)

a2[i, j]

18

Lecture 3 • Cornell CS4620 Fall 2020

Separable filtering

first, convolve with this

second, convolve with this

19

= *

Lecture 3 • Cornell CS4620 Fall 2020

Yucky details

• What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods:
• clip filter (black)
• wrap around
• copy edge
• reflect across edge
• vary filter near edge

20

[P
hi

lip
 G

re
en

sp
un

]

