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Linear, shift-invariant filters

• A fundamental kind of image processing operation 

• Linear: preserves summation and scalar multiplication 

 

• Shift-invariant: commutes with shifting the image 

 

(i.e. filter does the same thing at different places in the image) 

• Surprisingly, all such operations can be computed with one simple 
algorithm: convolution

f(I1 + I2) = f(I1) + f(I2)
f(aI ) = af(I )

f(sΔx,Δy(I )) = sΔx,Δy( f(I ))
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Convolution warm-up

• basic idea: define a new function by averaging over a sliding window 

• a simple example to start off: smoothing
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Convolution warm-up

• Same moving average operation, expressed mathematically:
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190 9. Signal Processing

Figure 9.3. Smoothing using a moving average.

9.2.1 Moving Averages

To get a basic picture of convolution, consider the example of smoothing a 1D
function using a moving average (Figure 9.3). To get a smoothed value at any
point, we compute the average of the function over a range extending a distance
r in each direction. The distance r, called the radius of the smoothing operation,
is a parameter that controls how much smoothing happens.

We can state this idea mathematically for discrete or continuous functions. If
we’re smoothing a continuous function g(x), averaging means integrating g over
an interval and then dividing by the length of the interval:

h(x) =
1

2r

Z x+r

x�r
g(t) dt.

On the other hand, if we’re smoothing a discrete function a[i], averaging means
summing a for a range of indices and dividing by the number of values:

c[i] =
1

2r + 1

i+rX

j=i�r

a[j]. (9.1)

In each case, the normalization constant is chosen so that if we smooth a constant
function the result will be the same function.

This idea of a moving average is the essence of convolution; the only differ-
ence is that in convolution the moving average is a weighted average.

9.2.2 Discrete Convolution

We will start with the most concrete case of convolution: convolving a discrete
sequence a[i] with another discrete sequence b[i]. The result is a discrete sequence
(a ? b)[i]. The process is just like smoothing a with a moving average, but this
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Discrete convolution

• Simple averaging: 

every sample gets the same weight 

• Convolution: same idea but with weighted average 

each sample gets its own weight (normally zero far away) 

• Visually: reflect b and slide it over so that b[0] lines up with a[j] 

• This is all convolution is: it is a moving weighted average
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Figure 9.3. Smoothing using a moving average.

9.2.1 Moving Averages

To get a basic picture of convolution, consider the example of smoothing a 1D
function using a moving average (Figure 9.3). To get a smoothed value at any
point, we compute the average of the function over a range extending a distance
r in each direction. The distance r, called the radius of the smoothing operation,
is a parameter that controls how much smoothing happens.

We can state this idea mathematically for discrete or continuous functions. If
we’re smoothing a continuous function g(x), averaging means integrating g over
an interval and then dividing by the length of the interval:

h(x) =
1

2r

Z x+r

x�r
g(t) dt.

On the other hand, if we’re smoothing a discrete function a[i], averaging means
summing a for a range of indices and dividing by the number of values:

c[i] =
1

2r + 1

i+rX

j=i�r

a[j]. (9.1)

In each case, the normalization constant is chosen so that if we smooth a constant
function the result will be the same function.

This idea of a moving average is the essence of convolution; the only differ-
ence is that in convolution the moving average is a weighted average.

9.2.2 Discrete Convolution

We will start with the most concrete case of convolution: convolving a discrete
sequence a[i] with another discrete sequence b[i]. The result is a discrete sequence
(a ? b)[i]. The process is just like smoothing a with a moving average, but this
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Figure 9.4. Computing one value in the discrete convolution of a sequence a with a filter b
that has support five samples wide. Each sample in a ? b is an average of nearby samples
in a, weighted by the values of b.

time instead of equally weighting all samples within a distance r, we use a second
sequence b to give a weight to each sample (Figure 9.4). The value b[i� j] gives
the weight for the sample at position j, which is at a distance i � j from the
index i where we are evaluating the convolution. Here is the definition of (a ? b),
expressed as a formula:

(a ? b)[i] =
X

j

a[j]b[i� j]. (9.2)

By omitting bounds on j, we indicate that this sum runs over all integers (that
is, from �1 to +1). Figure 9.4 illustrates how one output sample is com-
puted, using the example of b = 1

16 [. . . , 0, 1, 4, 6, 4, 1, 0, . . .]—that is, b[0] = 6
16 ,

a[±1] = 4
16 , etc.

In graphics, one of the two functions will usually have finite support (as does
the example in Figure 9.4), which means that it is non-zero only over a finite
interval of argument values. If we assume that b has finite support, there is some
radius r such that b[k] = 0 whenever |k| > r. In that case, we can write the sum
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And in pseudocode…
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Filters

• Sequence of weights b is called a filter

• Filter is nonzero over its region of support
usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0 
this makes for a weighted average, not just any 

old weighted sum 

• Most filters are symmetric about 0 
since for images we usually want to treat 

left and right the same

a box filter
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Convolution and filtering

• Can express sliding average as convolution with a box filter

• bbox = […, 0, 1, 1, 1, 1, 1, 0, …]/5
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Figure 9.6. Discrete convolution of a box function with a step function.

What is the result of convolving a and b? At a particular index i, as shown in
Figure ??, the result is the average of the step function over the range from i� 2
to i + 2. If i < �2, we are averaging all zeros and the result is zero. If i � 2,
we are averaging all ones and the result is one. In between there are i + 3 ones,
resulting in the value i+3

5 . The output is a linear ramp that goes from 0 to 1 over
five samples: 1

5 [. . . , 0, 0, 1, 2, 3, 4, 5, 5, . . . ]. ⇤

Properties of Convolution

The way we’ve written it so far, convolution seems like an asymmetric operation:
a is the sequence we’re smoothing, and b provides the weights. But one of the nice
properties of convolution is that it actually doesn’t make any difference which is
which: the filter and the signal are interchangeable. To see this, just rethink the
sum in Equation 9.2 with the indices counting from the origin of the filter b, rather

Example: box and step
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Convolution and filtering

• Convolution applies with any sequence of weights 

• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16
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Discrete convolution

• Notation: 

• Convolution is a multiplication-like operation 
commutative 

associative 

distributes over addition 

scalars factor out 

identity: unit impulse e = […, 0, 0, 1, 0, 0, …] 

• Conceptually no distinction between filter and signal
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Some useful filters
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Box:

Tent:

Gaussian:
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Discretizing filters

• A filter is usually written down as a continuous function 

• This function is sampled to get the filter weights 
(the box was an exception) 

• It is useful to scale filters to change their size 

• It is necessary to trim infinite filters (e.g. gaussian) to represent them 

• Typical approach: 2 parameters, radius  and scale  (names vary) r s

b[i] =
f(i/s)

∑r
i=−r f(i/s)

i ≤ r

0 otherwise
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Discrete filtering in 2D

• Same equation, one more index 

now the filter is a rectangle you slide around over a grid of numbers 

• Commonly applied to images 
blurring (using box, using gaussian, …) 

sharpening (impulse minus blur) 

feature detection (edges, corners, …) 

in convolutional neural networks (CNNs) 

• Usefulness of associativity 
often apply several filters one after another: (((a * b1) * b2) * b3) 

this is equivalent to applying one filter: a * (b1 * b2 * b3)
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And in pseudocode…
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Building 2D filters

• Almost always, we build 2D filters from 1D filters like this: 

 

• This is called a “separable” filter

a2[i, j] = a1[i]a1[ j]
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original    |    box blur sharpened    |    gaussian blur
[Philip Greenspun]
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Optimization: separable filters

• basic alg. is : large filters get expensive fast! 

• definition:  is separable if it can be written as: 

this is a useful property for filters because it allows factoring:

O(r2)

a2[i, j]
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Separable filtering

first, convolve with this

second, convolve with this
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Yucky details

• What about near the edge? 
the filter window falls off the edge of the image 

need to extrapolate 

methods: 
• clip filter (black) 
• wrap around 
• copy edge 
• reflect across edge 
• vary filter near edge
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