Convolution

Steve Marschner
CS 4620
Cornell University

Cornell CS4620 Fall 2020 Lecture3. 1

Linear, shift-invariant filters

- A fundamental kind of image processing operation

- Linear: preserves summation and scalar multiplication

fUy+ L) =f) + (L)
flal) = af(I)

- Shift-invariant: commutes with shifting the image

JSax,ayd)) = Spaea(f())

(i.e. filter does the same thing at different places in the image)

- Surprisingly, all such operations can be computed with one simple
algorithm: convolution

Cornell CS4620 Fall 2020 Lecture3. 2

Convolution warm-up

- basic idea: define a new function by averaging over a sliding window

- asimple example to start off: smoothing

® .
o. 'y O.. ..ooo. o,
° ® 0. ®e0 o? . o * °
. o111 L IR PUAE) - o
®
! ! original
e
° B seeelTe .
.00. A 1Y .‘0. ‘0.. %e,*? ’o.
evee? * (1

smoothed

Cornell CS4620 Fall 2020 Lecture3. 3

Convolution warm-up

- Same moving average operation, expressed mathematically:

1 1+r
=5y 2 ol

Cornell CS4620 Fall 2020 Lecture3. 4

Discrete convolution

Simple averaging:

1 1+7r

every sample gets the same weight

Convolution: same idea but with weighted average

(a*b)li }:a i — 7]

each sample gets its own weight (normally zero far away)

Visually: reflect b and slide it over so that b[0] lines up with afj]

This is all convolution is: it is a moving weighted average

Cornell CS4620 Fall 2020 Lecture3. 5

And in pseudocode...

function convolve(sequence a, sequence b, int r, int7)
s =0
for j = —r tor
s = s+ alj]bli —
return s

Cornell CS4620 Fall 2020 Lecture3. 6

Filters

« Sequence of weights b is called a filter

« Filter is nonzero over its region of support

usually centered on zero: support radius r

* Filter is normalized so that it sums to 1.0

this makes for a weighted average, not just any
old weighted sum

- Most filters are symmetric about 0

since for images we usually want to treat 2r+ 1
left and right the same

—r 0 r
a box filter

Cornell CS4620 Fall 2020 Lecture 3.

Convolution and filtering

« Can express sliding average as convolution with a box filter

¢ byy=L..0,1,1,1,1,1,0,..1/5

... 4

Cornell CS4620 Fall 2020 Lecture3. 8

Example: box and step

o b 11711

Cornell CS4620 Fall 2020 Lecture3. 9

Convolution and filtering

- Convolution applies with any sequence of weights

- Example: bell curve (gaussian-like) [..., 1,4, 6,4, 1, ...1/16

Cornell CS4620 Fall 2020 Lecture3-. 10

Discrete convolution

- Notation: b = cxa

« Convolution is a multiplication-like operation
commutative @ x b = b* a
associative @ % (b * C) — (a * b) * C
distributes over addition @ % (b -+ C) —axb+axc
scalars factorout xa b = a *x ab = a(a * b)
identity: unitimpulsee=[...,0,0,1,0,0,...]
a*xe—=—a

- Conceptually no distinction between filter and signal

Cornell CS4620 Fall 2020

Lecture3 -« 11

Box:

Tent:

Some useful filters

. 1/(2r+1) |i| <, 2r+1
abox,’r[z] — .
0 otherwise.
P
| —
| | | | | | ftent 1
— | <1,
ent (L) — .
fient() {0 otherwise;
-1 1'
X —

. 1 2 =
Gaussian: fole) = = /2 /

Cornell CS4620 Fall 2020

Lecture3.« 12

Discretizing filters

- A filteris usually written down as a continuous function

- This function is sampled to get the filter weights

(the box was an exception)

. Itis useful to scale filters to change their size
- Itis necessary to trim infinite filters (e.g. gaussian) to represent them

- Typical approach: 2 parameters, radius r and scale s (hames vary)

fils)
bli] = 1 X, f(ils)

0 otherwise

Cornell CS4620 Fall 2020 Lecture3-. 13

Discrete filtering in 2D

- Same equation, one more index

¥ b wf 7 i 5
(axb)[i,j] =Y ali',j'bli —i',j — J']
,l:l 7.]'/
now the filter is a rectangle you slide around over a grid of numbers
- Commonly applied to images
blurring (using box, using gaussian, ...)
sharpening (impulse minus blur)

feature detection (edges, corners, ...)

in convolutional neural networks (CNNs)

« Usefulness of associativity
often apply several filters one after another: (((a * b,) * b,) * b,)
this is equivalent to applying one filter:a * (b, * b, * b,)

Cornell CS4620 Fall 2020

Lecture3 -« 14

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int 7, int 7)

8 =)
r = a.radius
for i/ = —rtor do
for /' = —rtordo
s = 5+ ald'][j/]li —][—
return s

Cornell CS4620 Fall 2020 Lecture3. 15

Building 2D filters

 Almost always, we build 2D filters from 1D filters like this:
ali, j] = ajlila;|J]

. This is called a“separable” filter

Cornell CS4620 Fall 2020 Lecture3. 16

[Philip Greenspun]

original A |y box blur

Optimization: separable filters

- basic alg. is O(r?): large filters get expensive fast!

- definition: a,[i, j] is separable if it can be written as:

azlt, j] = ailila1|y]

this is a useful property for filters because it allows factoring:

(aQ*b ’Lj ZZQQ 7.7][)[7’_%]_j]
:ZZali]alj]bi—i,j—j]
T

=D _aili]| 2 aaliIbli =5 = J]

Cornell CS4620 Fall 2020

Lecture 3+ 18

Cornell CS4620 Fall 2020

16]24(16

24(36|24

16(24|16

slala|ls]=

el Bl KA L

Separable filtering

010101010 0|011101]60
0{0]0]0]0O) [014]01]0
—_ 114|641 *)1]0|6]0]0
010101010 0{0]1410]0
0]010]01]0)J]O]11[0]0

2 ali
,I:/

second, convolve with this /

f‘ Ir
st, convolve with th|s —

zal

7’ _Z',uj _]/]

Lecture 3« 19

Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods: Y “
p .

« clip filter (black) b
- wrap around

- copy edge

- reflect across edge
- vary filter near edge

[Philip Greenspun]

Cornell CS4620 Fall 2020 Lecture3. 20

