3D Viewing

CS 4620 Lecture 11
Viewing, backward and forward

• **So far have used the backward approach to viewing**
 – start from pixel
 – ask what part of scene projects to pixel
 – explicitly construct the ray corresponding to the pixel

• **Next will look at the forward approach**
 – start from a point in 3D
 – compute its projection into the image

• **Central tool is matrix transformations**
 – combines seamlessly with coordinate transformations used to position camera and model
 – ultimate goal: single matrix operation to map any 3D point to its correct screen location.
Forward viewing

- Would like to just invert the ray generation process
- Problem 1: ray generation produces rays, not points in scene
- Inverting the ray tracing process requires division for the perspective case
Mathematics of projection

• **Always work in eye coords**
 – assume eye point at 0 and plane perpendicular to z

• **Orthographic case**
 – a simple projection: just toss out z

• **Perspective case: scale diminishes with** z
 – and increases with d
Pipeline of transformations

- **Standard sequence of transforms**
Parallel projection: orthographic

to implement orthographic, just toss out z:

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
View volume: orthographic
Viewing a cube of size 2

- Start by looking at a restricted case: the *canonical view volume*
 - coordinates in the canonical view volume are called “normalized device coordinates” (NDC)
- It is the cube $[-1,1]^3$, viewed from the z direction
- Matrix to project it into a square image in $[-1,1]^2$ is trivial:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Viewing a cube of size 2

- To draw in image, need coordinates in pixel units, though
- Exactly the opposite of mapping \((i, j)\) to \((u, v)\) in ray generation
 - ...and exactly the same as a texture lookup

\[
\begin{array}{c|c|c}
1 & n_y - .5 \\
-1 & - .5 \\
-1 & n_x - .5 \\
1 & \\
\end{array}
\]

NDC \hspace{5cm} \text{screen space}
Windowing transforms

- This transformation is worth generalizing: take one axis-aligned rectangle or box to another
 - a useful, if mundane, piece of a transformation chain

\[
\begin{bmatrix}
1 & 0 & x' \\
0 & 1 & y' \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_h - x_l \\
y_h - y_l \\
1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -x_l \\
0 & 1 & -y_l \\
0 & 0 & 1
\end{bmatrix}
\]

[Textbook 4e fig. 6.18; eq. 6.6]
Viewport transformation

\[
\begin{bmatrix}
x_{\text{screen}} \\
y_{\text{screen}} \\
1
\end{bmatrix} = \begin{bmatrix}
n_x/2 & 0 & n_x/2 \\
0 & n_y/2 & n_y/2 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_{\text{canonical}} \\
y_{\text{canonical}} \\
1
\end{bmatrix}
\]

screen space \quad \text{NDC}
Viewport transformation

- In 3D, carry along z for the ride
 - one extra row and column

\[
M_{vp} = \begin{bmatrix}
\frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\
0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Orthographic projection

- First generalization: different view rectangle
 - retain the minus-z view direction

- specify view by left, right, top, bottom
- also near, far
Orthographic projection

- We can implement this by mapping the view volume to the canonical view volume.
- This is just a 3D windowing transformation!

\[
\begin{bmatrix}
\frac{x_h'-x_l'}{x_h-x_l} & 0 & 0 & \frac{x_l x_h-x_l' x_l}{x_h-x_l} \\
0 & \frac{y_h'-y_l'}{y_h-y_l} & 0 & \frac{y_l y_h-y_l' y_l}{y_h-y_l} \\
0 & 0 & \frac{z_h'-z_l'}{z_h-z_l} & \frac{z_l z_h-z_l' z_l}{z_h-z_l} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
M_{\text{orth}} = \begin{bmatrix}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

cautions:
- differences from traditional OpenGL standard!
- Here, \(n\) and \(f\) are negative; near is \(+1\) in the canonical view volume; and both eye space and clip space have right handed coordinates.
Locating the camera

- In constructing viewing rays we used the equation

\[o = e \]
\[d = -dw + uu + vv \]

- this can be seen as transforming the ray \((0, (u, v, -d))\) by the linear transformation:

\[F_c = \begin{bmatrix} u & v & w & e \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad o = F_c \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad d = F_c \begin{bmatrix} u \\ v \\ -d \\ 0 \end{bmatrix} \]

- in this interpretation, we first constructed the ray in eye space, then transformed it to world space.
Camera and modeling matrices

• The preceding transforms start from eye coordinates
 – before we apply those we need to transform into that space

• Transform from world (canonical) to eye space is traditionally called the *viewing matrix*
 – it is the canonical-to-frame matrix for the camera frame
 – that is, F_c^{-1}

• Remember that geometry would originally have been in the object’s local coordinates; transform into world coordinates is called the *modeling matrix*, M_m

• Note many programs combine the two into a *modelview matrix* and just skip world coordinates
Viewing transformation

the camera matrix rewrites all coordinates in eye space
Orthographic transformation chain

- Start with coordinates in object’s local coordinates
- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{\text{cam}} = F_c^{-1}$)
- Orthographic projection, M_{orth}
- Viewport transform, M_{vp}

$$p_s = M_{\text{vp}}M_{\text{orth}}M_{\text{cam}}M_mp_o$$

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x-1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y-1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ e \end{bmatrix}^{-1} M_m \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$
Clipping planes

• **In object-order systems we always use at least two clipping planes that further constrain the view volume**
 – near plane: parallel to view plane; things between it and the viewpoint will not be rendered
 – far plane: also parallel; things behind it will not be rendered

• **These planes are:**
 – partly to remove unnecessary stuff (e.g. behind the camera)
 – but really to constrain the range of depths
 (we’ll see why later)
Perspective projection

similar triangles:

\[
\frac{y'}{d} = \frac{y}{-z}
\]

\[
y' = -dy/z
\]
Homogeneous coordinates revisited

- **Perspective requires division**
 - that is not part of affine transformations
 - in affine, parallel lines stay parallel
 - therefore not vanishing point
 - therefore no rays converging on viewpoint

- “**True” purpose of homogeneous coords: projection**
Homogeneous coordinates revisited

- **Introduced** $w = 1$ coordinate as a placeholder

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\rightarrow
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

- used as a convenience for unifying translation with linear

- **Can also allow arbitrary** w

\[
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\sim
\begin{bmatrix}
w x \\
w y \\
w z \\
w
\end{bmatrix}
\]
Implications of w

\[
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix} \sim \begin{bmatrix}
w x \\
w y \\
w z \\
w \\
\end{bmatrix}
\]

- All scalar multiples of a 4-vector are equivalent
- When w is not zero, can divide by w
 - therefore these points represent “normal” affine points
- When w is zero, it’s a point at infinity, a.k.a. a direction
 - this is the point where parallel lines intersect
 - can also think of it as the vanishing point

- Digression on projective space
Perspective projection

to implement perspective, just move z to w:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} -dx/z \\ -dy/z \\ 1 \end{bmatrix} \sim \begin{bmatrix} dx \\ dy \\ -z \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
View volume: perspective
View volume: perspective (clipped)
Carrying depth through perspective

- Perspective has a varying denominator—can’t preserve depth!
- Compromise: preserve depth on near and far planes

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
\sim
\begin{bmatrix}
x \\
y \\
z \\
-1
\end{bmatrix}
= \begin{bmatrix}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

- that is, choose a and b so that \(z'(n) = n\) and \(z'(f) = f\).

\[
\tilde{z}(z) = az + b
\]

\[
z'(z) = \frac{\tilde{z}}{-z} = \frac{az + b}{-z}
\]

want \(z'(n) = n\) and \(z'(f) = f\)

result: \(a = -(n + f)\) and \(b = nf\) (try it)
Official perspective matrix

- **Use near plane distance as the projection distance**
 - i.e., $d = -n$

- **Scale by -1 to have fewer minus signs**
 - scaling the matrix does not change the projective transformation

$$P = \begin{bmatrix}
 n & 0 & 0 & 0 \\
 0 & n & 0 & 0 \\
 0 & 0 & n + f & -fn \\
 0 & 0 & 1 & 0
\end{bmatrix}$$
Perspective projection matrix

- **Product of perspective matrix with orth. projection matrix**

\[
M_{\text{per}} = M_{\text{orth}} P
\]

\[
= \begin{bmatrix}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n + f & -fn \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\
0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0 \\
0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n} \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

caution: differences from traditional OpenGL standard! Here, \(n\) and \(f\) are negative; near is +1 in the canonical view volume; and both eye space and clip space have right handed coordinates.
Perspective transformation chain

- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{\text{cam}} = F_c^{-1}$)
- Perspective matrix, P
- Orthographic projection, M_{orth}
- Viewport transform, M_{vp}

$$p_s = M_{\text{vp}}M_{\text{orth}}PM_{\text{cam}}M_mp_o$$

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x-1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y-1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n + f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_o \\ y_o \\ z_o \end{bmatrix}$$
Pipeline of transformations

- **Standard sequence of transforms**
Transformations for perspective