### Monte Carlo Illumination

**CS 4620 Lecture 20** 

# Surface illumination integral (as sum)

- BRDF tells you how light from a single direction is reflected
- Light coming from a small source behaves similarly
- What about light coming from everywhere?
  - approximate incoming light with many small sources on a sphere (the little bug can't tell the difference...)
  - reflected light is sum of reflected light due to each source (each source has its size  $\Omega_k$ , brightness  $L_k$ , and direction  $\omega_k$ )



## Surface illumination integral

### Take the limit as the little area sources get smaller

- collection of separate brightnesses  $L_k$  becomes a function  $L_i(\mathbf{w}_i)$
- size of sources turns into an integration measure  ${
  m d}\sigma$

$$L_r(\omega_r) = \int_{S_+^2} L_i(\omega_i) f_r(\omega_i, \omega_r) |\omega_i \cdot \mathbf{n}| d\sigma(\omega_i)$$

"The light reflected to direction  $\mathbf{w}_r$  is the integral, over the positive unit hemisphere, of the incoming light times the BRDF times the incoming cosine factor, with respect to surface area."

### A word on radiometric units

#### Power

energy per unit time, Watts

#### Irradiance

energy per unit area, W/m²

#### Radiance

energy per unit area and per unit solid angle, W/(m² sr)





## Angle and solid angle

### Angle

- size of a set of 2D directions (subset of unit circle)
- length / distance; whole circle has angle  $2\pi$  radians

### Solid angle

- the size of a set of 3D directions (subset of unit sphere)
- area / distance<sup>2</sup>; whole sphere has solid angle  $4\pi$  steradians





## Monte Carlo Integration

- Monte Carlo idea: design a random experiment whose average outcome is the answer we want
- Integration:

$$I = \int_{a}^{b} f(x)dx$$

• want to define an "estimator" g(x) such that

$$E\{g(x)\} = I$$
 for random values of x

 that is, the expected value of g is the answer we seek when x is chosen randomly.

# Uniform sampling

• If x is chosen uniformly at random from [a, b]:

$$E\{f(x)\} = \frac{1}{b-a} \int_a^b f(x)dx$$

so, to get the desired answer, set

$$g(x) = (b - a)f(x)$$

then

$$E\{g(x)\} = \int_a^b f(x)dx = I$$
 for x uniform in [a, b]

## Aside: probability density functions

### Probability distribution: familiar notion in the discrete case

- a distribution divides up one unit of probability among the elements of a probability space.
- e.g. roll two dice; probability space is  $\Omega = \{1, \ldots, 6\}^2$
- each possible roll is equally likely:  $p((i,j)) = \frac{1}{36}$
- probability distribution p has to be normalized:  $\sum p(x) = 1$  $x \in \Omega$
- a random variable is a function on  $\Omega$
- e.g. sum of the two dice: S((i,j)) = i + j
- values of S are distributed over  $\{2, \ldots, 12\}$
- $-S \sim p_S$  where  $p_S(n) = \Pr\{S(x) = n\}$

## Aside: probability density functions

### Probability distribution can also be over a continuous set

- e.g. spin a spinner from 0 to 6; probability space is  $\Omega = [0,6)$
- each possible spin is equally likely:  $p(x_0) = \frac{1}{6} = \frac{\Pr\{x_0 < x < x_0 + dx\}}{dx}$
- probability density p has to be normalized:  $\int_{\Omega} p(x)dx = 1$
- a random variable is a function on  $\Omega$
- e.g. sum of two spins:  $S:\Omega^2\to I\!\!R:S(x,y)=x+y$
- values of S are distributed over [0, 12)
- $-S \sim p_S$  where  $p_S(z) dz = \Pr\{z < S(x,y) < z + dz\}$ p(0) = 0;  $p(1) = \frac{1}{36};$   $p(6) = \frac{1}{6};$  p(12) = 0

## Expectation

#### Discrete case

when 
$$x \sim p(x)$$
,  $E\{f(x)\} = \sum_{x \in \Omega} f(x)p(x)$ 

#### Continuous case

when 
$$x \sim p(x)$$
,  $E\{f(x)\} = \int_{\Omega} f(x)p(x) dx$ 

# Uniform sampling revisited

- Choosing points uniformly from [a, b] is sampling from a pdf that has density I / (b – a).
  - if we use an estimator g with uniformly sampled x:

$$E\{g(x)\} = \int_{a}^{b} g(x)p(x) dx = \frac{1}{b-a} \int_{a}^{b} g(x)dx$$

so if f is the desired integrand, the correct estimator is

$$g(x) = (b - a)f(x)$$

## Convergence rate

 We can get a better estimate of the expected value of g by generating several values and averaging them.

$$G_n = \frac{1}{N} \sum_{i=1}^n g(x_i)$$
 where  $x_i \sim p$ 

• As n increases, the variance of  $G_n$  decreases

$$\sigma^{2} \left\{ \sum_{i=1}^{n} g(x_{i}) \right\} = \sum_{i=1}^{n} \sigma^{2} \{g\} = N\sigma^{2} \{g\}$$

$$\sigma\{G_n\} = \frac{\sigma\{g\}}{\sqrt{N}}$$

# Nonuniform sampling

- Choosing points instead from some other distribution over the interval [a, b] also works just as well
  - if we use an estimator g with  $x \sim p(x)$

$$E\{g(x)\} = \int_a^b g(x)p(x) dx$$

so if f is the desired integrand, the correct estimator is

$$g(x) = \frac{f(x)}{p(x)}$$

$$E\{g(x)\} = \int_a^b \frac{f(x)}{p(x)} p(x) dx = \int_a^b f(x) dx$$
 as long as p(x) is not zero!

### Monte Carlo illumination

- Monte Carlo integration is widely used to compute illumination integrals
  - integrand: product of illumination and BRDF and cosine factor

$$L_r(\omega_r) = \int_{S_+^2} L_i(\omega_i) f_r(\omega_i, \omega_r) |\omega_i \cdot \mathbf{n}| d\sigma(\omega_i)$$

– if we choose:

$$\omega_i \sim p(\omega_i)$$
 and set:  $g(\omega_i) = \frac{L_i(\omega_i) f_r(\omega_i, \omega_r) |\omega_i \cdot \mathbf{n}|}{p(\omega_i)}$ 

- then:  $E\{g(\omega_i)\}=L_r(\omega_r)$  (as long as p>0 over the whole hemisphere)
- this is an algorithm for computing  $L_r$ !

# Example: uniform sampling

- If we select directions uniformly over the hemisphere...
  - then:(see notebookfor how...)

$$p(\omega_i) \sim 1/(2\pi)$$

- $-2\pi$  because that is the area (solid angle) of the hemisphere; that way, probability integrates to 1
- the correct estimator is:

$$g(\omega_i) = \frac{L_i(\omega_i) f_r(\omega_i, \omega_r) |\omega_i \cdot \mathbf{n}|}{p(\omega_i)}$$
$$= 2\pi L_i(\omega_i) f_r(\omega_i, \omega_r) |\omega_i \cdot \mathbf{n}|$$

# Example: cosine-proportional sampling

- If we select directions proportional to  $|\omega_i \cdot \mathbf{n}|$  (see notebook for how...)
  - then:

$$p(\omega_i) \sim |\omega_i \cdot \mathbf{n}|/\pi$$

- factor of  $\pi$  needed so that probability integrates to 1
- the correct estimator is:

$$g(\omega_i) = \frac{L_i(\omega_i) f_r(\omega_i, \omega_r) |\omega_i \cdot \mathbf{n}|}{p(\omega_i)}$$
$$= \pi L_i(\omega_i) f_r(\omega_i, \omega_r)$$

## Example: BRDF-proportional sampling

- Suppose we can choose directions proportional to  $f_r(\omega_i,\underline{\omega_o})$  (where  $\omega_o$  is fixed and  $\omega_i$  is the variable)
  - then:

$$p(\omega_i) \sim f_r(\omega_i, \omega_o)/M(\omega_o)$$
 where  $M(\omega_o) = \int_{S_+^2} f_r(\omega_i, \omega_o) d\sigma(\omega_i)$ 

- normalization factor needed so that probability integrates to 1
- the correct estimator is:

$$g(\omega_i) = \frac{L_i(\omega_i) f_r(\omega_i, \omega_r) |\omega_i \cdot \mathbf{n}|}{p(\omega_i)}$$
$$= M(\omega_o) L_i(\omega_i) |\omega_i \cdot \mathbf{n}|$$