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Surface illumination integral (as sum)

* BRDF tells you how light from a single direction is reflected
* Light coming from a small source behaves similarly

* What about light coming from everywhere?

— approximate incoming light with many small sources on a sphere
(the little bug can't tell the difference...)

— reflected light is sum of reflected light due to each source
(each source has its size )y, brightness Lg, and direction W)

L,(wy) = Z Qi L fr (Wi, wr) |wr - N

l o | |

Ireﬂlecteld light Imtensﬁty of RRDF cosine factor
in direction Wy, light source k
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Surface illumination integral

* Take the limit as the little area sources get smaller
— collection of separate brightnesses Lx becomes a function Li(W))

— size of sources turns into an integration measure do

Lr(wr) — /S Li(wi)fr(wi,wr)\wi y n\da(wi)

2
+

“The light reflected to direction Wy Is the integral, over
the posrtive unit hemisphere, of the incoming light times
the BRDF times the incoming cosine factor, with respect
to surface area.”’
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A word on radiometric units

* Power

— energy per unit time, Watts
* Irradiance

— energy per unit area, W/m?
* Radiance

— energy per unit area and per unit solid angle, W/(m? sr)

N

77

irradiance radiance
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Angle and solid angle

* Angle
— size of a set of 2D directions (subset of unit circle)
— length / distance; whole circle has angle 27T radians

* Solid angle
— the size of a set of 3D directions (subset of unit sphere)

— area / distance?; whole sphere has solid angle 4Tt steradians
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Monte Carlo Integration

* Monte Carlo idea: desigh a random experiment whose
average outcome is the answer we want

* Integration:

I = /abf(x)dx

 want to define an “estimator” g(x) such that

Flgx)} =1 for random values of x

— that is, the expected value of g is the answer we seek
when x is chosen randomly.
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Uniform sampling

e [fxis chosen uniformly at random from [aq, b]:

E{f(a / fla

* 50, to get the desired answer, set

g9(x) = (b—a)f(x)

b
E{g(z)} = / f(@)dz =1  for x uniform in [a, b]
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Aside: probabllity density functions

* Probability distribution: familiar notion in the discrete case

— a distribution divides up one unit of probability among the
elements of a probability space.

— e.g roll two dice; probability space is Q = {1,...,6}?

— each possible roll 1s equally likely: p((7,5)) = 3_16
— probability distribution p has to be normalized: Zp(zc) =1
xel)

— a random variable 1s a function on Q

— e.g.sum of the two dice: S((4,7)) =i+ J

— values of S are distributed over {2,...,12}

— S ~ps where pg(n)=Pr{S(x)=n}
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Aside: probabllity density functions

* Probability distribution can also be over a continuous set
— e.g.spin a spinner from 0 to 6; probability space 1s = [0, 6)

ble <oin - 1 P
— each possible spin is equally likely: p(zg) = = I < $d< xo + du}
XL

— probability density p has to be normalized:/ p(x)dr =1
Q2

— a random variable Is a function on

— eg.sumoftwospins: §: Q% = IR: S(z,y)=x+y

— values of 5 are distributed over [0, 12)

— S ~pg where pg(z)dz=Pr{z < S(x,y) < z+ dz}
1
p(0) =0; p(1) 0 p(6) 1 p(12) =0
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-xpectation

e Discrete case

when 7 ~ p(z), E{f(x)} = f(x)p

rcl)

e Continuous case

when « ~ p(z), E{f(x)} = / f(2)p(z) da
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Uniform sampling revisited

 Choosing points uniformly from [a, b] is sampling from a pdf
that has density | / (b — a).

— If we use an estimator g with uniformly sampled x:

b b
Bly@)} = [ g@lp(@)ds = | gla)de

— so If T Is the desired integrand, the correct estimator is

g9(x) = (b—a)f(x)
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Convergence rate

* We can get a better estimate of the expected value of g by
generating several values and averaging them.

1 n
G, = ~ ;g(a}z) where z; ~ p

e As nincreases, the variance of G, decreases

o’ {Zg(xi)} =) {9} = No*{g}

019}
VN
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Nonuniform sampling

 Choosing points instead from some other distribution over
the interval [a, b] also works just as well

— if we use an estimator g with  ~ p(x)
b
Blg(@)} = [ ga)plo) da

— so If T Is the desired integrand, the correct estimator is

() = 12

p(x)

sto) = [ {Grtere= [ forie SEEREC
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Monte Carlo illumination

* Monte Carlo integration is widely used to compute
illumination integrals

— Integrand: product of llumination and BRDF and cosine factor

Ly (w,) = /S L) fr (@i, - mldo(w)

— 1f we choose: '

Li(wi) fr (Wi, wy) |wi -y
p(wi)

— then: E{g(wz)} = L, (wr) (as long as p > O over the whole hemisphere)

w; ~ plw;) andset: g(w;) =

— this Is an algorithm for computing L !
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-xample: uniform sampling

* |f we select directions uniformly over the hemisphere...

— then: (see notebook

for how...)
p(wi) ~ 1/(2m)
— 20t because that is the area (solid angle) of the hemisphere; that
way, probabllity integrates to 1

— the correct estimator Is;
Li(w;) fr(wi, wy)|w; - 1

p(w;)
— ZWLi(wi)fr(wi,wrﬂwi y ﬂ‘

g(wi) =
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-xample: cosine-proportional sampling

(see notebook

* If we select directions proportional to |w; - n| for how...)

— then:
p(wi) ~ |wi - n|/m
— factor of 7 needed so that probabllity integrates to 1

— the correct estimator Is:

Li(w;) fr(wi, wr)|w; - m
p(wz‘)
= l;(w;)fr(ws,ws)

g(w;) =
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-xample: BRDF-proportional sampling

* Suppose we can choose directions proportional to f,(w;,w,)
(where w, is fixed and Ww; is the variable)

— then:
p(w;) ~ fr(wi,ws)/M(w,) where M(wo) = [ frl(wi,wo)do(w;)

5%
— normalization factor needed so that probability integrates to 1

— the correct estimator iIs:

Li(w;) fr (Wi, wr ) |w; - 1
p(wi)
— M(wO)Li(wi)\wi . Il|

g(w;) =
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