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Introduction: corner cutting

* Piecewise linear curve too jagged for you! Lop off the
corners!

— results in a curve with twice as many corners

* Still too jagged? Cut off
the new corners

— process converges
to a smooth curve

— Chaikin’s algorithm

http://www.multires.caltech.edu/
teaching/demos/java/chaikin.htm
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Corner cutting in equations

* New points are linear combinations of old ones

 Different treatment for odd-numbered and even-
numbered points.

ph; = (3" + i) /4
p2i—|—1 = (pz T 3pz—|—1 )/4
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Spline-splitting math for B-splines

* Can use spline-matrix math from previous lecture to
split a B-spline segment in two at s =t = 0.5.

* Result is especially nice because the rules for adjacent
segments agree (not true for all splines).
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Subdivision for B-splines

* Control vertices of refined spline are linear
combinations of the c.v.s of the coarse spline
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Drawing a picture of the rule

* Conventionally illustrate subdivision rules as a “mask”

that you match against the neighborhood

— often implied denominator = sum of weights

even
B-spline
odd
even
corner-cutting
odd
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Cubic B-Spline
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Cubic B-Spline
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Cubic B-Spline
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Subdivision curves

* Key idea: let go of the polynomials as the definition of
the curve, and let the refinement rule define the curve

* Curve is defined as the limit of a refinement process
— properties of curve depend on the rules
— some rules make polynomial curves, some don’t

— complexity shifts from implementations to proofs
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Playing with the rules

* Once a curve is defined using subdivision we can
customize its behavior by making exceptions to the
rules.

* Example: handle endpoints by simply using the mask [ ]
at that point.

* Resulting curve is a uniform B-spline in the middle, but
near the exceptional points it is something different.
— it might not be a polynomial
— but it is still linear, still has basis functions

— the three coordinates of a surface point are still separate
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From curves to surfaces
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Subdivision surfaces
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Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the
left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a

particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.

[Schroder & Zorin SIGGRAPH 2000 course 23]
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Generalizing from curves to surfaces

* Two parts to subdivision process
* Subdividing the mesh (computing new topology)

— For curves: replace every segment with two segments

— For surfaces: replace every face with some new faces

* Positioning the vertices (computing new geometry)
— For curves: two rules (one for odd vertices, one for even)

* New vertex’s position is a weighted average of positions
of old vertices that are nearby along the sequence

— For surfaces: two kinds of rules (still called odd and even)

* New vertex’s position is a weighted average of positions
of old vertices that are nearby in the mesh
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Subdivision of meshes

e Quadrilaterals
— Catmull-Clark 1978
* Triangles | >~
— Loop 1987

Face split for quads
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Face split for triangles

[Schroder & Zorin SIGGRAPH 2000 course 23]
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Loop regular rules
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Catmull-Clark regular rules
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Creases

* With splines, make creases by turning off continuity
constraints

* With subdivision surfaces, make creases by marking
edges “sharp”

— use different rules for vertices with sharp edges

— these rules produce B-splines that depend only on vertices
along crease

e Y Crease and boundary
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[Schroder & Zorin SIGGRAPH 2000 course 23]

a. Masks for odd vertices b. Masks for even vertices
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Boundaries

At boundaries the masks do not work

— mesh is not manifold; edges do not have two triangles

* Solution: same as crease o
— shape of boundary is controlled only by vertices along =
boundary =
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a. Masks for odd vertices b. Masks for even vertices 2
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Extraordinary vertices

* Vertices that don’t have the “standard’ valence
* Unavoidable for most topologies
* Difference from splines N /

o

v
:/:

— treatment of extraordinary
vertices is really the only way
subdivision surfaces are different
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[Schroder & Zorin SIGGRAPH 2000 course 23]
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Full Loop rules (triangle mesh)
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Full Catmuli-Clark rules (quad mesh)
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[Schroder & Zorin SIGGRAPH 2000 course 23]
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a. Masks for odd vertices b. Mask for even vertices
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Loop Subdivision Example

control polyhedron
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Loop Subdivision Example

refined
control polyhedron
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Loop Subdivision Example

odd
subdivision mask
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Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example

even
subdivision mask
(ordinary vertex)

Cornell CS4620 Fall 2018 ¢ Lecture 16

© 2018 Steve Marschner ¢ 25



Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example
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even
subdivision mask

(extraordinary
Cornell 54620 Fall 2018 * Lecture V@ rtex)
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Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example

subdivision level 2
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Loop Subdivision Example

subdivision level 3
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Loop Subdivision Example

subdivision level 4
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Loop Subdivision Example

limit surface
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Relationship to splines

* In regular regions, behavior is identical

* At extraordinary vertices, achieve C!

— near extraordinary, different from splines

* Linear everywhere

— mapping from parameter space to 3D is a linear combination
of the control points

— “emergent” basis functions per control point
* match the splines in regular regions
* “custom” basis functions around extraordinary vertices
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Loop vs. Catmull-Clark

Loop
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Catmull-Clark

[Schroder & Zorin SIGGRAPH 2000 course 23]
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Loop vs. Catmull-Clark

Loop
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Catmull-Clark

[Schroder & Zorin SIGGRAPH 2000 course 23]
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Loop vs. Catmull-Clark
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Loop with creases

(a-d) Loop's subdivision scheme: control mesh, meshes after | and 2 subdivision steps, and smooth limit surtace

[Hugues Hoppe]

(e-h) Our piecewise smooth subdivision scheme: tagged control mesh, meshes atter T and 2 subdivision steps. and piecewise smooth limit surtace
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Catmull-Clark with creases
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Variable sharpness creases

* |dea: subdivide for a few levels using the crease rules,
then proceed with the normal smooth rules.

* Result: a soft crease that gets sharper as we increase
the number of levels of sharp subdivision steps

(W

sharpness 0 sharpness | sharpness 2 sharpness 3

- - -
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Geri’s Game

* Pixar short film to test
subdivision in production

— Catmull-Clark (quad mesh)
surfaces

— complex geometry
— extensive use of creases

— subdivision surfaces to support
cloth dynamics
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