Games with
lexture Mapping

CS 4620 Lecture 13

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * |

Recall first definrtion...

Texture mapping: a technique of
defining surface properties (especially
shading parameters) in such a way that
they vary as a function of position on
the surface.

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 2

A refined definition

Texture mapping: a set of
techniques for defining functions on
surfaces, for a variety of uses.

* Let’s look at some examples of more general uses of texture
maps.

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 3

Reflection mapping

Early (earliest?) non-decal use of textures

* Appearance of shiny objects
— Phong highlights produce blurry highlights for glossy surfaces.
— A polished (shiny) object reflects a sharp image of its environment.
* The whole key to a
shiny-looking material is

providing something
for it to reflect.

[Dror, Willsky, & Adelson 2004]

(@) (b)

Figure 2. (a). A shiny sphere rendered under photographically
acquired real-world illumination. (b). The same sphere rendered
under illumination by a point light source.

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 4

Reflections In ray tracing

* Recall how we can make mirror reflections in ray tracing

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 5

Reflection mapping

* |f scene is infinitely far away, the color seen by the reflection
ray depends only on the direction of the ray

— a two-dimensional function
— represent it with a texture!

* Environment map: texture that maps directions to colors
— one option: axes are (theta, phi)
— better option: cube map

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 6

straight up straight up straight up

due East due South due West due North due East

straight down straight down straight down

A spherical panorama, aka. enironment map

openfootage.net

http://openfootage.net

-nvironment map

* A function from the sphere to colors,
stored as a texture.

[Blinn & Newell 1976]

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 8

£ (

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph
Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner = 9

-nvironment Maps

[Paul Debevec]

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 10

[CS467 slides]

Cube map

(u,v)=(1,1)
’x:y:z

right face has
x> |yl and
x>zl

(u,v)=(0,0)
X=—-y=-7

a direction vector maps to the point on the cube that is along that direction.
The cube is textured with 6 square texture maps.

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 12

[Zephyris at en.wikipedia]

[Emil Persson]

Reflection mapping in GLSL

* A fragment operation
— requires surface normal and a way to get the view direction

* GLSL handles cubemaps by itself

— you Just give 1t the reflection vector and It figures out where to
sample and on which face

— sample using textureCube()

e Don’t overlook built-in functions
— e.g. reflect()

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 14

Geometry

Displacement
mapping

[CS467 slides]

[wikiwand]

base surface hand-painted displacement map (detail)

Pawet Filip
tolas.wordpress.com displaced surface

Cornell CS4620 Spring 2017 Lecture 16+ 17

Displacement mapping

* A powerful tool for modeling detail
— used heavily In film production

 Geometric prerequisites
— texture map representing height field
— smooth normals
— texture coordinates
— dense triangulation

 In GLSL

— a vertex operation (because it moves geometry)

— displace vertices along normal vectors by a distance proportional
to texture map value

— compute new normal to displaced surface

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 19

Normals in displacement mapping

* Displacement changes the surface normal, depending on:
— derivative of height function
— orientation of texture coordinates
— speed of texture coordinates

constant height function >

normals unchanged

displaced
surface

normals tilted

displaced
surface

varying height function >

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 20

Normals in displacement mapping

* Displacement changes the surface normal, depending on:
— derivative of height function
— orientation of texture coordinates
— speed of texture coordinates normals tift less

displaced
surface

u varying slowly

u=0.25

/\

u=~0 height function u=1 normals tilt more

u=0.75

displaced
surface

u varying quickly

u=1
Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 2|

Displacement mapping math

e Start with a parametric surface and a height function
p(u,v) : R* = R? h(u,v) : R =2 R

— Recall the tangent vectors are the partial derivatives of p

op Jop
ty(u,v) = %(u,v) ty(u,v) = %(u,v)

— ...and the normal vector is the cross product of the two tangents.
n(u,v) =t,(u,v) X t,(u,v)

— We normalize to make unit tangents and normals, when needed

g, = tu £ = = o x i
u = v — n—-—— U X v
[t] [ty | [n

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 22

Displacement mapping math

* Define displaced surface by adding an offset along the normal

d . A~ (unit normal here because we want h
P (u’ U) - p(u, U) T h(u7 v)n(u, U) to measure the displacement distance)

 Tangents to the displaced surface
— start with tangent in the direction of the u texture coordinate

op? op oh R on
" ——(u,v) = " —(u,v) + e — (u,v)n(u,v) + h(u, v) =— 3. (u,v)

— last term gets messy but only matters for large displacements
relative to surface curvature; throw it out. Then the tangents are

oh

tg(uv U) — tu() + —(u ’U) fl(u, U)
ou (non-unit tangents here because the
d Oh X correct result depends on their length)
tv(uav) :tv() + %(U ’U) II(U,U)

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 23

Displacement mapping math

* Last step is to compute the normal to the displaced surface

d _ +d ., 4d
n'=t, xt,

d
~d 1

11 =
[n?|

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 24

Geometry for displacement

* geometric inputs
— u tangent (unnormalized) as vertex attribute

— v tangent (unnormalized) as vertex attribute
— height field as a texture

* vertex stage
— compute displaced vertex position
— look up displacement value from texture

— compute normal to displaced surface (or compute them
ahead of time

— compute derivatives of height by finite differences and store height and
derivatives in a

— add offset to the base surface tangents 3-channel texture)
— normalized cross product Is the shading normal

* fragment stage: just compute shading

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner * 25

Computing tangent vectors

* How do we get these tangent vectors!?
— they need to be stored at vertices on the mesh, like normals

* For a triangle, there’s a unique linear map from (u,v) to (x,y,z)
— the derivatives of that map are the (non-unit) tangents

— can be computed by solving three 2x2 linear systems
— math resembles triangle setup for rasterization; detalls here

* For displacement mapping you want to leave the tangents
unnormalized and non-orthogonal

* For other uses it’s often handy to make the two tangents and
the normal into an ONB

— use exactly the basis-from-two math that we have used for
cameras and manipulators

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 26

http://www.terathon.com/code/tangent.html

Bump mapping

[Blinn 1978]

Cornell CS4620 Spring 2017 Lecture 16+ 27

BuMp Mapping

* Displacement mapping is expensive
— requires densely tessellated geometry
— many triangles to rasterize
* For small displacements, the most important effect is on the
normal
— 50 Just do that part; don't displace the surface

e Bump mapping is then a fragment operation
— doesn’t require dense tessellation
— doesn't actually displace the surface
— gives shading that looks just like displaced surface

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 28

Geometry

Bump
mapping

Displacement
mapping

[CS467 slides]

Bump mapping

 Geometric inputs
— tangent vectors (unnormalized) as vertex attributes

— height field as a texture
— no dense triangulation needed

* Vertex phase
— simply transform and pass through the position and tangents

* Fragment phase

— compute normal to displaced surface (or compute them

ahead of time
and store in a
2-channel texture)

— compute derivatives of height by finite differences
— add offset to the base surface tangents
— normalized cross product is the shading normal

— compute shading using displaced normal

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 30

Normal mapping

==,
“"\h— Tl B

L 4§% v
R

original mesh simplified mesh simplified mesh

: , and normal mapping
4M triangles 500 triangles 500 triangles

[Paolo Cignoni]

Cornell C54620 Spring 2017 Lecture 16« 31

Normal mapping

 Geometric prerequisites
— Texture map (3 channels) representing normal field
— single lookups Into normal map required
— Smooth normals
— Unit tangent vectors
— If you want to store normals in tangent space (and you do)
— No dense triangulation needed
— No finite differencing needed

— Geometric logic
— look up normal from map
— transform into (tangent-u, tangent-v, normal) space

Cornell CS4620 Fall 2018 ¢ Lecture 15 © 2017 Steve Marschner ¢ 32

3D textures

 Texture is a function of (u, v, w)

— can just evaluate texture at 3D
surface point

— good for solid materials
— often defined procedurally
— see book for more!

Cornell CS4620 Fall 2018 ¢ Lecture 15

© 2017 Steve Marschner *

[Wolfe / SG97 Slide set]

w
w

