Triangle meshes I

CS 4620 Lecture 2
spheres

approximate sphere
finite element analysis
A small triangle mesh

12 triangles, 8 vertices
A large mesh

10 million triangles from a high-resolution 3D scan
about a trillion triangles from automatically processed satellite and aerial photography
Triangles

• Defined by three vertices
• Lives in the plane containing those vertices
• Vector normal to plane is the triangle’s normal
• Conventions (for this class, not everyone agrees):
 – vertices are counter-clockwise as seen from the “outside” or “front”
 – surface normal points towards the outside (“outward facing normals”)

© 2017 Steve Marschner • 10
Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface
- Geometrically, a mesh is a *piecewise planar* surface
 - almost everywhere, it is planar
 - exceptions are at the edges where triangles join
- Often, it’s a piecewise planar approximation of a smooth surface
 - in this case the creases between triangles are artifacts—we don’t want to see them
Representation of triangle meshes

• **Compactness**
• **Efficiency for rendering**
 – enumerate all triangles as triples of 3D points
• **Efficiency of queries**
 – all vertices of a triangle
 – all triangles around a vertex
 – neighboring triangles of a triangle
 – (need depends on application)
 • finding triangle strips
 • computing subdivision surfaces
 • mesh editing
Representations for triangle meshes

- **Separate triangles**
- **Indexed triangle set**
 - shared vertices
- **Triangle strips and triangle fans**
 - compression schemes for fast transmission
- **Triangle-neighbor data structure**
 - supports adjacency queries
- **Winged-edge data structure**
 - supports general polygon meshes

Interesting and useful but not used in Mesh assignment
Separate triangles

\[
\begin{array}{c|c|c}
\hline
0, y_0, z_0 & x_2, y_2, z_2 & x_1, y_1, z_1 \\
x_0, y_0, z_0 & x_3, y_3, z_3 & x_2, y_2, z_2 \\
\vdots & \vdots & \vdots \\
\end{array}
\]
Separate triangles

• **array of triples of points**
 - float\([n_T][3][3]\): about 72 bytes per vertex
 • 2 triangles per vertex (on average)
 • 3 vertices per triangle
 • 3 coordinates per vertex
 • 4 bytes per coordinate (float)

• **various problems**
 - wastes space (each vertex stored 6 times)
 - cracks due to roundoff
 - difficulty of finding neighbors at all
Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

Triangle {
 Vertex vertex[3];
}

Vertex {
 float position[3]; // or other data
}

// ... or ...

Mesh {
 float verts[nv][3]; // vertex positions (or other data)
 int tInd[nt][3]; // vertex indices
}
Indexed triangle set

| verts[0] | x_0, y_0, z_0 |
| verts[1] | x_1, y_1, z_1
| | x_2, y_2, z_2
| | x_3, y_3, z_3
| | \vdots |

tInd[0]	0, 2, 1
tInd[1]	0, 3, 2
	\vdots
Estimating storage space

- \(n_T = \#\text{tris}; \ n_V = \#\text{verts}; \ n_E = \#\text{edges} \)

- **Euler:** \(n_V - n_E + n_T = 2 \) for a simple closed surface
 - and in general sums to small integer
 - argument for implication that \(n_T:n_E:n_V \) is about 2:3:1
Indexed triangle set

- **array of vertex positions**
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates × 4 bytes) per vertex

- **array of triples of indices (per triangle)**
 - int[n_T][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices × 4 bytes) per triangle

- **total storage: 36 bytes per vertex (factor of 2 savings)**
- represents topology and geometry separately
- finding neighbors is at least well defined
Data on meshes

- Often need to store additional information besides just the geometry
- Can store additional data at faces, vertices, or edges
- Examples
 - colors stored on faces, for faceted objects
 - information about sharp creases stored at edges
 - any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices
Key types of vertex data

- **Surface normals**
 - when a mesh is approximating a curved surface, store normals at vertices

- **Texture coordinates**
 - 2D coordinates that tell you how to paste images on the surface

- **Positions**
 - at some level this is just another piece of data
 - position varies continuously between vertices
Differential geometry 101

- **Tangent plane**
 - at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the *tangent plane*

- **Normal vector**
 - vector perpendicular to a surface (that is, to the tangent plane)
 - only unique for smooth surfaces (not at corners, edges)
Surface parameterization

• A surface in 3D is a two-dimensional thing
• Sometimes we need 2D coordinates for points on the surface
• Defining these coordinates is parameterizing the surface
• Examples:
 – cartesian coordinates on a rectangle (or other planar shape)
 – cylindrical coordinates (θ, y) on a cylinder
 – latitude and longitude on the Earth’s surface
 – spherical coordinates (θ, ϕ) on a sphere
Example: unit sphere

- **position:**
 \[
 x = \cos \theta \sin \phi \\
 y = \sin \theta \\
 z = \cos \theta \cos \phi
 \]

- **normal is position**
 (easy!)
How to think about vertex normals

- **Piecewise planar approximation** converges pretty quickly to the smooth geometry as the number of triangles increases
 - for mathematicians: error is $O(h^2)$

- **But the surface normals don’t converge so well**
 - normal is constant over each triangle, with discontinuous jumps across edges
 - for mathematicians: error is only $O(h)$

- **Better**: store the “real” normal at each vertex, and *interpolate* to get normals that vary gradually across triangles
Interpolated normals—2D example

- Approximating circle with increasingly many segments
- Max error in position error drops by factor of 4 at each step
- Max error in normal only drops by factor of 2
Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous
 - let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - every sequence of three vertices produces a triangle (but not in the same order)
 - e.g., 0, 1, 2, 3, 4, 5, 6, 7, ... leads to
 (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), ...
 - for long strips, this requires about one index per triangle
Triangle strips

verts[0]	\(x_0, y_0, z_0\)
verts[1]	\(x_1, y_1, z_1\)
	\(x_2, y_2, z_2\)
	\(x_3, y_3, z_3\)
	⋮

tStrip[0]	4, 0, 1, 2, 5, 8
tStrip[1]	6, 9, 0, 3, 2, 10, 7
	⋮
Triangle strips

- **array of vertex positions**
 - float[nV][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- **array of index lists**
 - int[nS][variable]: 2 + n indices per strip
 - on average, (1 + ε) indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- **total is 20 bytes per vertex (limiting best case)**
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh
Triangle fans

• Same idea as triangle strips, but keep oldest rather than newest
 – every sequence of three vertices produces a triangle
 – e.g., 0, 1, 2, 3, 4, 5, … leads to
 (0 1 2), (0 2 3), (0 3 4), (0 4 5), …
 – for long fans, this requires
 about one index per triangle

• Memory considerations exactly the same as triangle strip
Validity of triangle meshes

- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
 - **mesh topology**: how the triangles are connected (ignoring the positions entirely)
 - **geometry**: where the triangles are in 3D space
Topology/geometry examples

• same geometry, different mesh topology:

• same mesh topology, different geometry:
Topological validity

- **strongest property: be a manifold**
 - this means that no points should be "special"
 - interior points are fine
 - edge points: each edge must have exactly 2 triangles
 - vertex points: each vertex must have one loop of triangles

- **slightly looser: manifold with boundary**
 - weaken rules to allow boundaries
Topological validity

- **Consistent orientation**
 - Which side is the “front” or “outside” of the surface and which is the “back” or “inside?”
 - rule: you are on the outside when you see the vertices in counter-clockwise order
 - in mesh, neighboring triangles should agree about which side is the front!
 - caution: not always possible

![Diagram of consistent orientation examples](image)

- [OK](#)
- [bad](#)

non-orientable
Geometric validity

- generally want non-self-intersecting surface
- hard to guarantee in general
 - because far-apart parts of mesh might intersect