
CS 4620 Preliminary Exam #1

Tuesday 5 October 2010—50 minutes

Explain your reasoning for full credit.
You are permitted a double-sided sheet of notes.
Calculators are allowed but unnecessary.

Problem 1: 2D Transformations (15 pts)

(i) Estimate the 2D affine transformation matrix, T =

[
F v
0T 1

]
∈ R3×3, given its action on three homogeneous

points: 1
1
1

 T−→

2
1
1

 ,

 1
−1
1

 T−→

2
1
1

 ,

−1
−1
1

 T−→

0
1
1

 .

• Answer: You need to estimate F and v from its observed transformation of some 2D points,[
F v
0T 1

](
pk

1

)
=

(
p′k
1

)
⇐⇒ Fpk + v = p′k,

where we will denote

p1 =

(
1
1

)
−→ p′1 =

(
2
1

)
, (1)

p2 =

(
1
−1

)
−→ p′2 =

(
2
1

)
, (2)

p3 =

(
−1
−1

)
−→ p′3 =

(
0
1

)
. (3)

There are numerous ways to solve for F and v, with the least easy being setting it up as a large 6x6 system of
equations. Another way is to solve for F first (then compute the translation v) by subtracting one equation from
the other two

F (pk − pj) + v = (p′k − p′j),

to obtain the matrix form,

F
[
(p2 − p1) (p3 − p1)

]
=
[
(p′2 − p′1) (p′3 − p′1)

]
⇐⇒ FP = P ′,

and then solve the 2x2 linear system for F ,
F = P ′P−1.

Finally you get the translation from any equation

v = p′k − Fpk.

The simplest way is to observe that the data makes this problem easy: the first two points (which differ by the
y coordinate) map to the same place, p′1 = p′2, so the transformation F must have a zero “y column.” For



example, in a column-oriented form you can let F = [t u] where t,u ∈ R2, and let pk = (xk, yk)T , so that we
need to solve for the 3 vectors t,u and v:

xkt + yku + v = p′k, k = 1, 2, 3.

This leads to the system of equations

t + u + v =

(
2

1

)
(4)

t− u + v =

(
2

1

)
(5)

−t− u + v =

(
0

1

)
. (6)

Subtracting the first two equations yields

u =

(
0

0

)
,

afterwhich adding the last two equations yields

v =

(
1

1

)
,

and so

t =

(
1

0

)
,

and the transformation matrix is

T =

[
F v
0T 1

]
=

1 0 1
0 0 1
0 0 1


(ii) What kind of transformation does this matrix represent?

• Answer: It applies a nonuniform scale of (sx, sy) = (1, 0) (which projects away all y components) then
translates by (1, 1).

Problem 2: Affine Transformations (10 pts)

Show that affine transformations preserve parallel lines.
(Hint: Recall the explicit parameterization of a line.)

• Answer: Consider two parallel lines whose points can be explicitly represented as

pk + tu, k = 1, 2,

where each is parameterized by some t ∈ R, and both point in the same u direction (by virtue of being parallel)

but have different base points pk. Applying an affine transformation
[
F v
0T 1

]
to such points produces new line

points
F (pk + tu) + v, = (Fpk + v) + tFu, = p′k + tu′.

However, since both transformed lines point in the same direction u′ = Fu, they are still parallel.

2



Problem 3: Quaternions (15 pts)

Rotate the point p=(1, 1, 1) using the rotation specified by the quaternion q=〈d;u〉=〈1; 1, 1, 1〉.

• Answer: In short, the point is unchanged since it lies on the rotation axis. You can show this by using the
definition of a unit quaternion. First, you need to make a unit quaternion and apply the definition

q̂ =
q

‖q‖
=

q√
4

=<
1

2
;

1

2
,

1

2
,

1

2
>=< cos

θ

2
; sin

θ

2
v >

so that the unit axis of rotation, v, is

sin
θ

2
v =

1

2
(1, 1, 1) =⇒ v =

1√
3

(1, 1, 1).

Clearly since p= (1, 1, 1) lies on the rotation axis, the rotated version will not change under rotation, p′ = p.
Arguing thus was sufficient to receive full credit.

Alternately many people proceeded directly to apply the quaternion multiplication formulas, which would also
work. We can represent the point using a quaternion vector, which before and after rotation is

p̃ =< 0;p >, and p̃′ =< 0;p′ > .

Then the quaternion rotation formula is (using the unit quaternion version for convenience)

p̃′ = q̂ p̃ q̂∗ (7)

=

(
1

2
< 1; 1, 1, 1 >

)
< 0;p >

(
1

2
< 1;−1,−1,−1 >

)
(8)

=
1

4
< 1; 1, 1, 1 > < 0; 1, 1, 1 > < 1;−1,−1,−1 > (9)

then using the formula for quaternion multiplication

< d;u >< d′;u′ >=< dd′ − u · u′; du′ + d′u + u× u′ >

we obtain

p̃′ =
1

4
< 1; 1, 1, 1 > < 0; 1, 1, 1 > < 1;−1,−1,−1 > (10)

=
1

4
< −3; 1, 1, 1 > < 1;−1,−1,−1 > (11)

=
1

4
< 0; 4, 4, 4 > (12)

= < 0; 1, 1, 1 > (13)
= < 0;p > (14)

Problem 4: SLERP (10 pts)

When interpolating with SLERP between two unit quaternions, x and y, we use:
SLERP(x,y, α), if x · y > 0, and SLERP(x,−y, α) otherwise.

(i) Why is this method better than just SLERP(x,y, α)? What is the difference between +y and −y here?

3



• Answer: Recall that scaling a quaternion by a nonzero constant does not change the rotation it represents, and
therefore ±y both represent the same physical rotation. The only difference is the size of the interpolation
performed, which is related to the angle Ω between x and y, given by Ω = cos−1(x · y). The two interpolation
paths differ by which way they travel around the great circle, and the formula just takes the shorter path—as
many students illustrated with a figure.

(ii) When interpolating unit normal vectors, n1 and n2, for lighting calculations, should we also use
SLERP(n1,n2, α), if n1 · n2 > 0, and SLERP(n1,−n2, α) otherwise?

• Answer: No, because, unlike quaternions for which ±q correspond to the same physical rotations, ±n cor-
respond to different normals for shading/lighting calculations. Using this formula would lead to interpolated
normals which vary insufficiently when the two normals are at angles greater than 90o.

4


