
CS 4620 Final Exam

Wednesday 9, December 2009—21
2 hours

Explain your reasoning for full credit.
You are permitted a double-sided sheet of notes.
Calculators are allowed but unnecessary.

Problem 1: Continuity (8 pts)

You have learned about parametric and geometric continuity. For each 2D curve, answer the continuity
query as correctly as possible, and provide a brief explanation:

(a) Is a circle C0 continuous?

(b) Is a circle G0 continuous?

(c) Is a circle C∞ continuous?

(d) Is a circle G∞ continuous?

(e) Is a square C0 continuous?

(f) Is a square G0 continuous?

(g) Is a square C1 continuous?

(h) Is a square G1 continuous?

Problem 2: View Frustum Culling (10 pts)

“View frustum culling” is a technique to avoid drawing (or cull) geometry which is outside the view frustum.
To assist with culling, assume that each object has a bounding sphere with object-frame center position,
co = (cx, cy, cz, 1)T , and radius Ro. Imagine that you know you have an [l, r]× [b, t]× [f, n] orthographic
viewing volume, and you know each of the matrices (Mvp, Morth, Mcam, Mm) used to construct the
orthographic view transformation which maps points from object space to screen space:

ps =


xs

ys

zc

1

 = Mvp Morth Mcam Mm po = M


xo

yo

zo

1

 .

Derive a simple mathematical test to determine if an object is safely “off screen.”

1



Problem 3: Rasterizing Curves (15 pts)

In this question you will extend Bresenham’s midpoint algorithm for line rasterization to build a DDA-based
rasterizer for a quadratic Bézier curve. For simplicity you may assume that the curve is parameterized in
the form

y(x) = y0B0(x) + y1B1(x) + y2B2(x),

where

Bi(x) =
(

2
i

)
xi (1− x)2−i

are the quadratic Bernstein polynomials. You may even assume that the slope of the curve satisfies 0 ≤
y′(x) ≤ 1.

(a) First, derive the equations needed to use forward differencing to evaluate the Bézier curve at unit
∆x = 1 spacings without unnecessary multiplication. (Hint: First convert y(x) to monomial form.)

(b) Second, provide pseudocode for a simple DDA rasterizer from x = x0 to x = x1. You need not
consider shading, attribute interpolation, or antialiasing—you only need to “turn on” pixels using
appropriate calls to output(x,y).

Problem 4: Tracing rays through hexagonal subdivisions (12 pts)

(1,0)

(0,0)

(2,0)
(3,0)

(-1,0)
(-2,0)

(0,1)
(1,1)

(2,1)

(-1,1)
(-2,1)

(1,-1)
(0,-1)

(2,-1)
(3,-1)

(-1,-1)
(-2,-1)

(1,-2)

(0,-2)

(2,-2)
(3,-2)

(-1,-2) (1,-3)
(2,-3)

(3,-3)

(3,-4)

(0,2)
(-1,2)

(-2,2)

(-2,3)

2h

You have seen how to trace a ray through a square grid in 2D,
and even a voxel grid in 3D. In this question you will consider 2D
hexagonal grids. Analogous to rectangular grids, assume that the
hexagonal cells have an (i, j) indexing as shown in the figure. As-
sume that each hexagon’s parallel edges are 2h apart (see figure).

Propose an efficient pseudocode implementation to trace the
ray through an infinite hexagonal subdivision, making calls to
output(i,j) indices of hexagons traversed. For simplicity, as-
sume that the ray r(t) = e+ tv, t ≥ 0, starts at the center of cell
(i, j) = (0, 0) as shown in the figure. Ignore boundaries.

2



Problem 5: Phong Tesselation (20 pts)

Recall that Phong Shading interpolates vertex normals across a
triangle for smooth shading on low-resolution meshes, i.e., the unnormalized surface normal at barycentric
coordinate (u, v, w) (where w = 1−u− v) is approximated by barycentrically interpolated vertex normals,

n′(u, v) = uni + vnj + wnk,

where the unit vertex normals are ni, nj and nk. Of course, since each triangle is still planar,

p(u, v) = upi + vpj + wpk,

the piecewise planar shape is still apparent at silhouettes.

Recently, Boubekeur and Alexa [SIGGRAPH Asia 2008] introduced Phong Tesselation as a simple way
to use vertex normals to deform a triangle mesh to have smoother silhouettes (see Figures 1 and 2). In the
following, you will derive their formula for a curved triangle patch, p∗(u, v), and analyze surface continuity.

Figure 1: Phong Tesselation Examples: A triangle deformed with different vertex normals.

Triangle Mesh Phong Shading Phong Shading and Tesselation

Figure 2: Phong Tesselation

Answer the following four questions:

(a) Consider the plane passing though vertex i’s position, pi, and sharing the same normal, ni. Give an
expression for the orthogonal projection of a point p onto vertex i’s plane, hereafter denoted by πi(p).

3



(b) The deformed position p∗(u, v) is simply
the barycentrically interpolated projections of the
undeformed point p(u, v) onto the three ver-
tex planes, i.e., the barycentric interpolation of
πi(p(u, v)), πj(p(u, v)), and πk(p(u, v)). De-
rive a polynomial expression for p∗(u, v) in terms
of u, v and w—you can also write it only in
terms of u and v but it is messier. (Hint: Ex-
press your answer in terms of projected-vertex po-
sitions, such as πi(pj).)

(c) What degree is this triangular bivariate polynomial patch, p∗(u, v)?

(d) Given a triangle mesh that is converted to these polynomial patches, consider the parametric continuity
of the resulting spline surface:

(i) Show that the surface is G0 continuous.

(ii) Show that the surface is not G1 continuous.

4


