
CS 4620 Programming Assignment 4
Shaders

out: Wednesday 14th October 2015

due: Thursday 29 October 2015 (11:59pm)

1 Introduction

In this assignment, you will implement some shaders in GLSL, a graphics-specific language that
lets you write programs that run on the graphics processor (GPU). We provide a framework and
different scenes, so you can try your shaders with different configurations. Your task consists of
mostly shader programming, the framework takes care of sending the required data from the CPU
to your shaders.
There are four main components to the assignment:

1. Implement a Cook-Torrance shader with texture-mapped diffuse component. This can pro-
duce more realistic illumination than the Blinn-Phong shader you implemented in the Ray 1
assignment.

2. Implement specular (mirror-like) reflection under environment lighting.

3. Implement a normal mapping shader (without environment mapping).

4. Implement a displacement mapping shader (also without environment mapping) and compare
results with normal mapping.

2 Interface Overview

You will use the same interface you used for the Scene assignment. We have provided the imple-
mentation of Blinn-Phong shading (TestScenePhong.xml, Phong.vert, Phong.frag) as an example.
We have created the shader files for you, so you just have to fill in the shader implementations. We
have also prepared some scene files which you can use to test your shaders. You should have one
scene file for each task in the assignment. The white balls indicate point light sources. Correct
renderings of the scene files are shown below.

1

CS 4620—Assignment 4—Shaders 2

Figure 1: Correct rendering of the TestSceneCookTorrance.xml scene file, the sphere at the left has
Cook-Torrance shading, the other one has Blinn-Phong shading

Figure 2: Correct rendering of the TestSceneCookTorrance.xml scene file, camera moved to show
the lights from grazing angle

CS 4620—Assignment 4—Shaders 3

Figure 3: Correct rendering of the TestSceneReflection.xml scene file

Figure 4: Correct rendering of the TestSceneNormalMapped.xml scene file

CS 4620—Assignment 4—Shaders 4

Figure 5: Correct rendering of the TestSceneDispMapped.xml scene file

3 Requirements

The assignment is broken into four parts: Cook-Torrance shader, specular reflection under environ-
ment mapping, normal mapping, and displacement mapping.

3.1 Problem 1: Cook-Torrance Shader

Blinn-Phong shading can give you nice results and it’s fast and easy to implement – but it’s far
from the reality of light reflection. For more realistic appearance, we should use more sophisticated
models like Cook-Torrance shading. Note the difference between Blinn-Phong and Cook-Torrance
shading in Figure 1 and 2.

The Cook-Torrance shading model starts with the same Lambertian diffuse shading as Blinn-
Phong, but it models the surface’s microstructure to give a more physically accurate approximation
for the specular term. The microfacet model used in Cook-Torrance shading assumes that the sur-
face consists of randomly aligned small smooth planar facets. The model also takes the Fresnel
refraction-reflection term and the shadowing effect of the microfacets into account. If you are inter-
ested in this topic, we suggest reading [1].

To compute Cook-Torrance shading, you will need the same vectors which you used in Blinn-
Phong shading: the viewing direction vector, the normal vector and the light direction vector (for
each light source). The shading equation is the following in case of one light source [2]:

color =

(
ks
F (β)

π

D(θh)G

(N · V)(N · L)
+ kd

)
max(N · L, 0) I

r2
+ kd ∗ Ia

where F is the Fresnel term, D is the microfacet distribution, G is the geometric attenuation, N
is the normal vector of the surface, V is the viewing direction, L is the light direction, I is the light
intensity, r is the shaded point’s distance from the light source, Ia is the ambient light intensity, ks

CS 4620—Assignment 4—Shaders 5

and kd are the diffuse and specular reflectance of the surface, and the angles β and θh are as defined
below.

You can get the value of ks and kd using getSpecularColor and getDiffuseColor functions in the
shader program, you can find more details about these in 4.2.

3.1.1 Fresnel Term

The Fresnel equations describe the reflective/refractive behavior of the light when it reaches a
smooth surface. For this assignment we’ll use an approximation of the reflectance part here and
ignore refraction. This approximation uses β which is the angle between the viewing direction V
and the half vector H:

H =
L+ V

||L+ V ||

F (β) = F0 + (1− F0)(1− cosβ)5 = F0 + (1− F0)(1− (V ·H))5

where F0 is the specular reflectance when light arrives perpendicularly to the surface; we’ll use
0.04.

3.1.2 Microfacet Distribution

The determine the distribution of the microfacets, we use the Beckmann distribution function. θh is
the angle between the normal N and the half vector H:

D(θh) =
1

m2 cos4 θh
e−(

tan θh
m

)2 =
1

m2 cos4 θh
e
− 1−cos2 θh
m2 cos2 θh =

1

m2(N ·H)4
e

(N·H)2−1

m2(N·H)2

where m ∈ [0, 1] is the roughness term, which controls the sharpness of highlights. Roughness
has the same function as Phong exponent, but the effect goes in the opposite direction; 0 is a perfect
mirror surface, and 0.1-0.2 is a slightly glossy surface.

3.1.3 Geometric Attenuation

This term captures the self-shadowing of the microfacets, for detailed explanation see [1].

G = min(1,
2(N ·H)(N · V)

V ·H
,
2(N ·H)(N · L)

V ·H
)

CS 4620—Assignment 4—Shaders 6

Figure 6: An example of unfolded cube map (work of Emil Persson, aka Humus)

3.2 Problem 2: Environment Mapping

You used point lights in the Raytracer and Scene assignments. Real world scenes usually have
much more complex lighting conditions than that and environment mapping is a clever technique
to capture complex lighting in a texture. The idea of an environment map is that the illumination
from the environment depends on which direction you look, and an environment map is simply a
texture you look up by direction to answer the question “how much light do we see if we look in
that direction?”. Your task here is to implement specular reflection under a given environment map.

Environment lighting is the lighting conditions surrounding the rendered object. In OpenGL,
there is a special kind of texture called cube map, which stores images of the distant environment.
A cube map consists of six faces, and each of them has a 2D texture (see Figure 6). You can sample
a point on the cube with a 3D vector in order to get environment light intensity in a certain direction.
See section 11.6 of the book. In this assignment, we’ve done the part of building the cube map and
you can use getEnvironmentColor(vec3 l) to sample it in the shader.

When using environment mapping, the image looks more realistic if you can see the environ-
ment being reflected in the background of the scene – that is, rays that don’t hit the object should
just be looked up in the environment. We use a sky box to add the background. The sky box is
just a huge box surrounding the scene that is shaded by the shader Environment.frag and Environ-
ment.vert. When you look at the background, you are actually looking at the inner faces of the box.
In Environment.frag shader, you simply look up the color of the environment in the direction of the
viewing ray. Implementing the sky box is a good starting point for environment mapping: once it is
done, you will be able to look around the environment simply by rotating the camera.

The next step is to implement specular reflection under environment lighting. Given a viewing
direction and a normal direction, we can use the equation in the written part (i.e., Mirror Reflection)
to compute the reflection direction, and then use it to sample the cube map. The shader file for
specular reflection is ReflectionMap.frag and ReflectionMap.vert.

The scene will look like Figure 3 after implementing the reflection.

3.3 Problem 3: Normal Mapping

Creating detailed models with thousands of polygons is a time consuming job and rendering them
in real-time can be also problematic. However, with normal mapping, we can make simple, low

CS 4620—Assignment 4—Shaders 7

resolution models look like highly detailed ones. In addition to the polygon model, we provide a
high resolution normal map which we can use in the fragment shader instead of the interpolated
normals, adding detail to the low resolution model. Normal maps can be generated procedurally in
the shaders or read from an image and used as a texture.

In this task, you have to implement a normal map texture generator which generates normals for
a sphere which has smaller flat discs on its surface. This texture will be used in the fragment shader
to retrieve normals instead of using the interpolated normals. You will see two spheres in the test
scene TestSceneNormalMapped.xml, one uses your generated normal map, the other uses a normal
map which is loaded from an image.

The normal map texture generator should have two parameters:

1. resolution: The number of flat discs for each row and column on the generated normal map.

2. bumpRadius: The radius of the flat discs. If bumpRadius is 0.5 the discs are tangent to
each other, if it is larger, they intersect. If bumpRadius is ≥ 1.0 then the sphere should look
like it has not smooth but rectangular surface.

You have to implement the getColor function of the TexGenSphereNormalMap class. This func-
tion will be called with u and v sweeping from 0 to 1 and the returned colors will be saved to a
texture, which will be passed later to the shader.

As a first step, we suggest that you generate the sphere normals without discs. You should see
the same result as you get in TestScenePhong.xml, if you modify the shader to render the normal
vectors as color.

Now, you can add the discs, whose centers are on a resolution by resolution grid in texture
space. Thus, you should have resolution ∗ resolution number of circles with the same radius on
a regular grid in texture space. In world space, the normal vector inside a disc should be constant
along the disc’s surface and equal to the normal vector of the sphere at the disc center. Outside all
discs the normal is simply the normal of the sphere. However, the value of the normal that must be
sent to the texture must be in tangent space, so a conversion from world space to the object’s tangent
space is necessary.

You can get the normal map value for a texture coordinate by calling getNormalColor(texture
coordinate). See 4.2 for detailed explanation about this function. Since textures store RGB color
and not arbitrary vectors, we have to transform our normal vector components from [-1, 1] to [0, 1]
when we set the texture color. If you use Colord to store the converted [0, 1] values, you can easily
convert them to [0, 255] using the Color class. Don’t forget that your shader will get the normal
map as a texture, which means that the values are in [0, 1] (GLSL uses the [0, 1] continuous color
range instead of [0, 255]). Thus, you have to convert these “color channels” back into the three
coordinates of the normal vector in the normal mapping fragment shader to obtain normal vectors
again. The recovered normal vector is in tangent space, which means you have to transform it to
world space using a tangent space matrix and normal matrix.

3.4 Problem 4: Displacement Mapping

Displacement mapping takes a step further towards accurate rendering of a bumpy surface, and
moves the vertices of the mesh along the normal vectors. We call the map which stores the mag-
nitude values height map. We use the normal map to hold the displacement magnitudes, so you

CS 4620—Assignment 4—Shaders 8

Figure 7: The normal map texture with bumpRadius = 0.5, resolution = 10

Figure 8: The normal map texture with bumpRadius = 0.25, resolution = 4

can query height map values using getNormalColor(texture coordinate). The displacement magni-
tude should be the average of the channels of the retrieved color from the height map texture. You
can have a look at the height map we used in the scene file to generate terrain from a plane with
displacement mapping (Figure 9).

The vertex shader from Phong.vert is a good starting-point. The task here is to modify that
shader to move each vertex along the normal direction by a distance proportional to the value in
the height map. The dispMagnitude uniform variable determines the scale of the displacements: a
value of 1.0 in the height map means the vertex should be moved by a distance dispMagnitude. The
displacement should take place in model space, before transforming to world coordinates, so that
the displacement magnitude is measured in object-space units.

3.5 Additional implementation notes

We use a scaling factor for all pixel values of the final image. This can be used to fine tune the final
image brightness. It is called exposure and it can be reached from all shaders. You should multiply
the computed pixel color with exposure, before setting the final pixel color.

gl FragColor = computedColor · exposure;

CS 4620—Assignment 4—Shaders 9

Figure 9: The height map texture used for terrain generation.

4 Framework

The framework has a standard set of uniform variables which are passed to each shader:

mWorld The model matrix, which transforms the points into world coordinates.

mWorldIT The inverse transpose of the previous matrix, it is used to transform normals to world
coordinates.

mView The view matrix, it is used to transform points from world coordinates to camera coordi-
nates.

mProj The projection matrix.

mViewProjection The product of the view and projection matrices.

worldCam The position of the camera in world coordinates.

exposure A scaling factor for all pixel values of the final image.

shininess The shininess of the surface being illuminated (Phong exponent).

roughness The roughness of the surface being illuminated (used in the Cook-Torrance shader).

dispMagnitude Scale for magnitude of the displacement (used in the displacement mapping
shader).

getDiffuseColor(vec2 uv) The diffuse color of the surface being illuminated. Can be
indexed with texture coordinates. Each component is between 0.0 and 1.0.

getSpecularColor(vec2 uv) The specular color of the surface being illuminated. Can be
indexed with texture coordinates. Each component is between 0.0 and 1.0.

getEnvironmentColor(vec3 l) The environment lighting from a certain direction. Use a
3D vector to sample the cube map.

getNormalColor(vec2 uv) The normal map of the surface being illuminated. Can be in-
dexed with texture coordinates. Each component is between 0.0 and 1.0. This is also used to
store the height map in the displacement mapping task.

numLights The actual number of point lights.

CS 4620—Assignment 4—Shaders 10

lightPosition The position array of the lights.

lightIntensity The intensity array of the lights.

ambientLightIntensity The intensity of the ambient light source.

We also standardize five vertex attributes:

vPosition The position of the vertex.

vNormal The normal of the vertex.

vUV The texture coordinates of the vertex.

vTangent The tangent-space X-axis found in world space.

vBitangent The tangent-space Y-axis found in world space.

In addition to these variables, you might want to use varying variables. These variables are the
output of the vertex shader and before arriving to the fragment shader input, they are interpolated
across triangles. They are how your vertex and fragment shaders communicate, and deciding what
variables you need is up to you.

4.1 Bindings

We defined bindings to each of the preceding variables. As a result, we have a handle (similar to a
handle in Windows API) for each of them, which we can use to assign values to the variables and
pass them to the shader program. You can look at most of these bindings in RenderMaterial.java.
Before sending the vertices of an object through the rendering pipeline, we set all of the attribute
and variable values which are used in the current material’s shader program. You can look at the
code in Renderer.java:draw()

4.2 Samplers

Samplers are used to access values of a texture in GLSL. They represent a texture which is bound to
the OpenGL context. The OpenGL context has a certain number of texture units, which you can use
to bind a texture to. For each texture type there is a corresponding texture sampler. E.g. for a 1D
texture (GL TEXTURE 1D) the sample type is sampler1D. We use sampler2D and samplerCube
in this assignment. The CPU code of the framework takes care of the texture bindings and setting
up samplers. For further reading, we suggest https://www.opengl.org/wiki/Sampler_
(GLSL).

We might have textured surfaces or sometimes they just have a constant color. We want the same
shader code to work for all combinations of textured/untextured inputs. Thus we define a func-
tion for each of these possibly textured values: getDiffuseColor(vec2 uv), getSpecularColor(vec2
uv), getNormalColor(vec2 uv) and getEnvironmentColor(vec3 l). Before compiling the shader
code, we append the appropriate code for each function, depending on whether that particular
input is textured. If you would like to see how this works, you can find the code in Renderma-
terial.java:addSpecProviders.

https://www.opengl.org/wiki/Sampler_(GLSL)
https://www.opengl.org/wiki/Sampler_(GLSL)

CS 4620—Assignment 4—Shaders 11

4.3 Shader compilation

All the shaders you will write are loaded and compiled by classes we have provided. In case of a
shader compile error, you will see a message in the console with the error.

You can add an eclipse plugin for shader syntax highlighting. It works with Eclipse Luna Release
(4.4.0), may work with other Eclipse versions. Download from here, installation instructions here.

4.4 Additional Notes

Note that color values in the range [0, 1] in GLSL correspond to the full range of brightnesses that
can be displayed. If you need more information about OpenGL or GLSL, there is an excellent
webpage: https://www.opengl.org/wiki/GLSL. You can also look at http://www.
lighthouse3d.com/opengl/glsl/, where you can find a tutorial and plenty of examples.
Beware that there are lots of different GLSL versions out there with different syntax. We use GLSL
1.2 in this assignment.

Also, we have marked all the functions or parts of the functions you need to complete in with
TODO A4 in the source code. To see all these TODOs in Eclipse, select Search menu, then File
Search and type TODO.

5 What to Submit

Submit a zip file containing your solution organized the same way as the code on CMS. Include a
readme in your zip that contains:

• You and your partner’s names and NetIDs.

• Any problems with your solution.

• Anything else you want us to know.

Also, there will be a written part (A4 Shaders Written). Submit the solutions in pdf format on
CMS.

References

[1] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM Trans. Graph.,
1(1):7–24, January 1982.

[2] Philip Dutre, Kavita Bala, and Philippe Bekaert. Advanced Global Illumination. A. K. Peters,
Ltd., Natick, MA, USA, 2002.

http://sourceforge.net/projects/glshaders/
http://stackoverflow.com/questions/8434358/adding-glsl-syntax-highlighting-to-eclipse
https://www.opengl.org/wiki/GLSL
http://www.lighthouse3d.com/opengl/glsl/
http://www.lighthouse3d.com/opengl/glsl/

	Introduction
	Interface Overview
	Requirements
	Problem 1: Cook-Torrance Shader
	Fresnel Term
	Microfacet Distribution
	Geometric Attenuation

	Problem 2: Environment Mapping
	Problem 3: Normal Mapping
	Problem 4: Displacement Mapping
	Additional implementation notes

	Framework
	Bindings
	Samplers
	Shader compilation
	Additional Notes

	What to Submit

