Textures and normals in ray tracing

CS 4620 Lecture 6

Texture mapping

• Objects have properties that vary across the surface

Texture Mapping

 So we make the shading parameters vary across the surface

Texture mapping

• Adds visual complexity; makes appealing images

Ē

Texture mapping

- Surface properties are not the same everywhere
 - diffuse color (k_d) varies due to changing pigmentation
 - brightness (k_s) and sharpenss (p) of specular highlight varies due to changing roughness and surface contamination
- Want functions that assign properties to points on the surface
 - the surface is a 2D domain
 - given a surface parameterization, just need function on plane
 - images are a handy way to represent such functions
 - can represent using any image representation
 - raster texture images are very popular

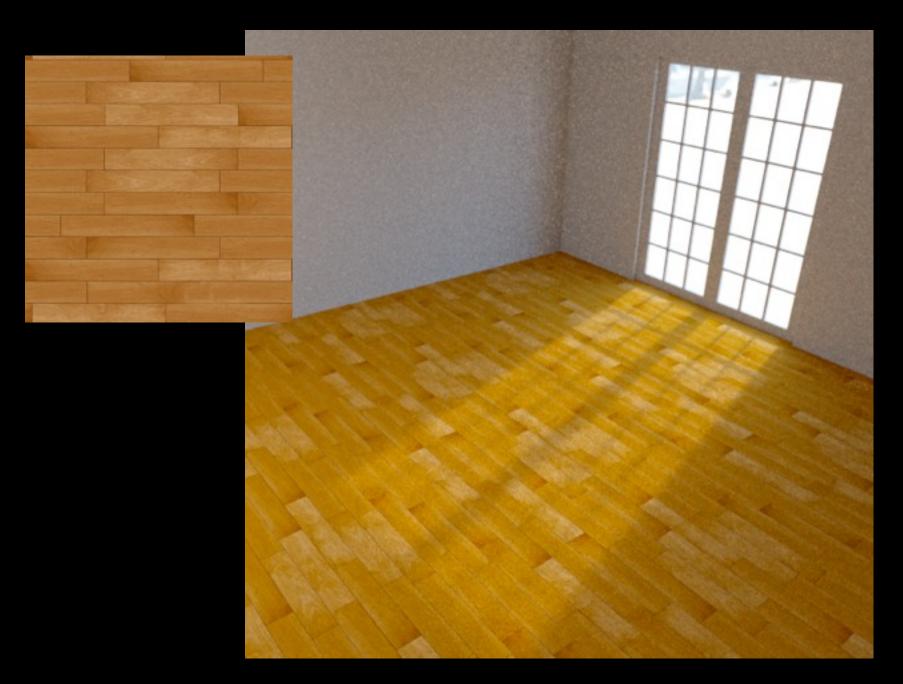
A first definition

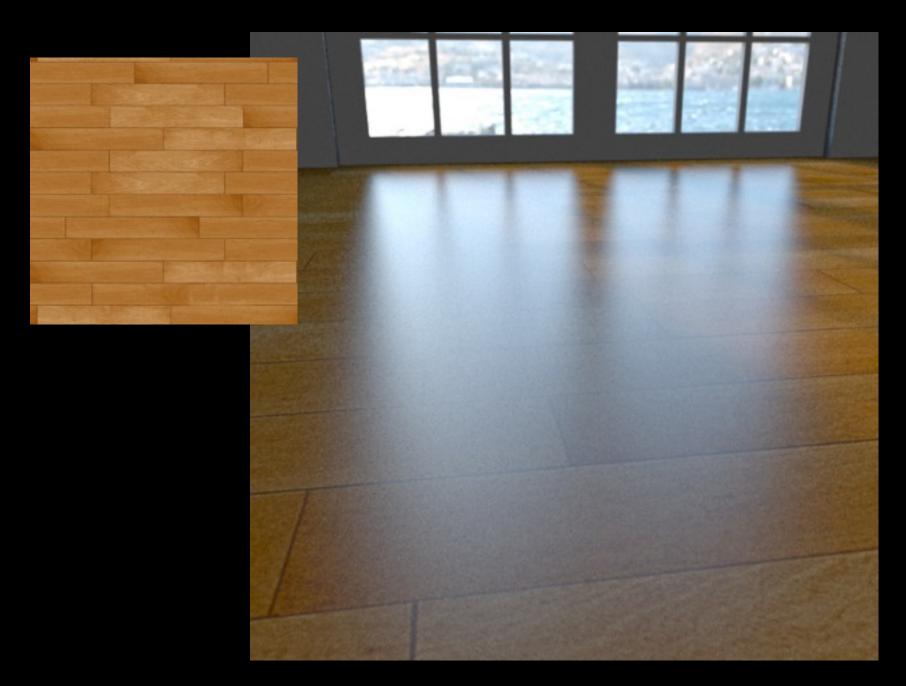
Texture mapping: a technique of defining surface properties (especially shading parameters) in such a way that they vary as a function of position on the surface.

- This is very simple!
 - but it produces complex-looking effects

Examples

- Wood gym floor with smooth finish
 - diffuse color k_D varies with position
 - specular properties k_S , n are constant
- Glazed pot with finger prints
 - diffuse and specular colors k_D , k_S are constant
 - specular exponent n varies with position
- Adding dirt to painted surfaces
- Simulating stone, fabric, ...
 - to approximate effects of small-scale geometry
 - they look flat but are a lot better than nothing



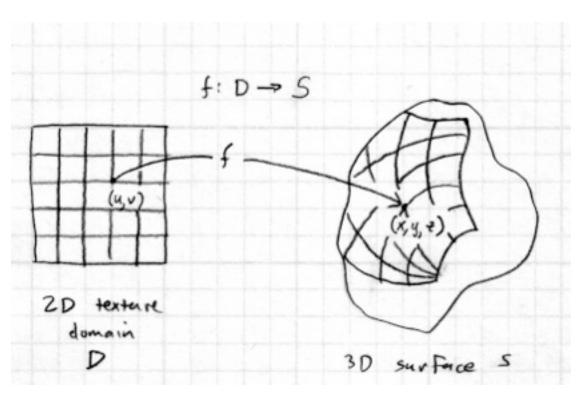


Mapping textures to surfaces

- Usually the texture is an image (function of u, v)
 - the big question of texture mapping: where on the surface does the image go?
 - obvious only for a flat rectangle the same shape as the image
 - otherwise more interesting

Mapping textures to surfaces

- "Putting the image on the surface"
 - this means we need a function f that tells where each point on the image goes
 - this looks a lot
 like a parametric
 surface function
 - for parametric
 surfaces (e.g.
 sphere, cylinder)
 you get f for free

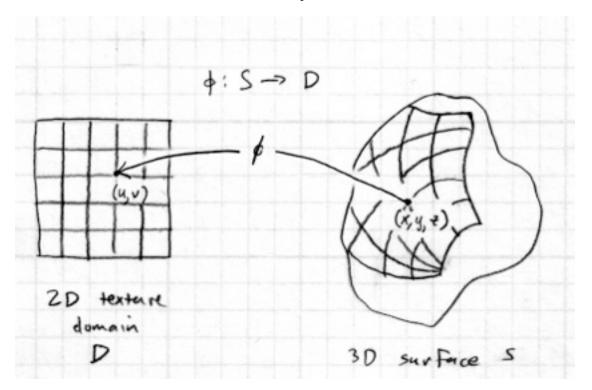


Texture coordinate functions

- Non-parametrically defined surfaces: more to do
 - can't assign texture coordinates as we generate the surface
 - need to have the inverse of the function f
- Texture coordinate fn.

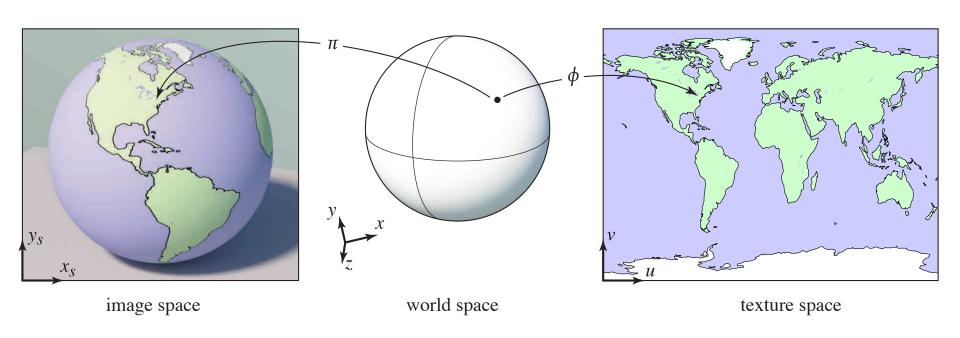
$$\phi: S \to \mathbb{R}^2$$

– when shading **p** get texture at φ(**p**)



Three spaces

- Surface lives in 3D world space
- Every point also has a place where it goes in the image and in the texture.



Texture coordinate functions

Define texture image as a function

$$T:D\to C$$

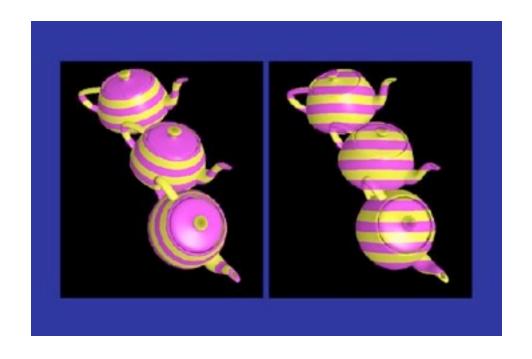
- where C is the set of colors for the diffuse component
- Diffuse color (for example) at point **p** is then

$$k_D(\mathbf{p}) = T(\phi(\mathbf{p}))$$

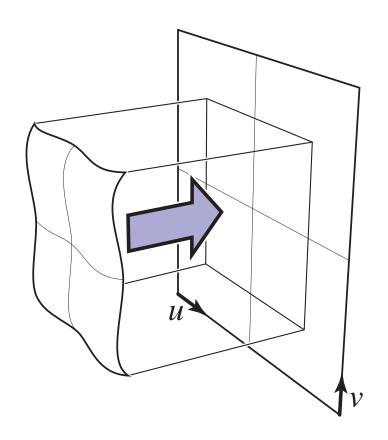
Coordinate functions: parametric

- For parametric surfaces you already have coordinates
- Need to be able to invert the parameterization
- E.g. for a rectangle...
- E.g. for a sphere...

- For non-parametric surfaces it is trickier
 - directly use world coordinates
 - need to project one out

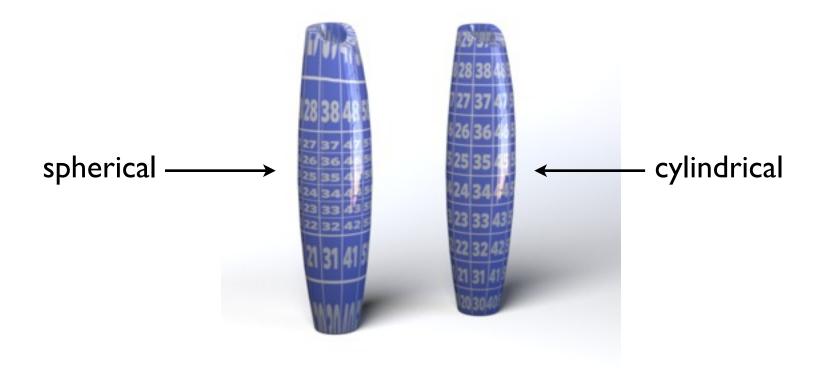


Planar projection

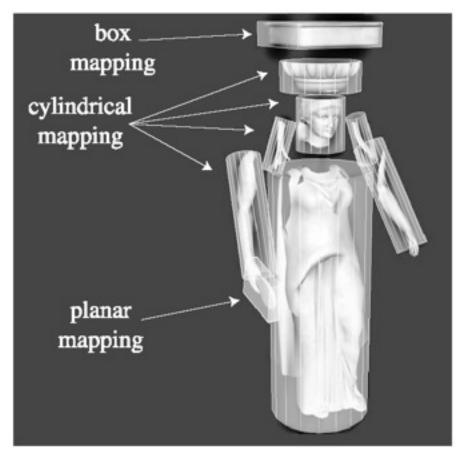


Spherical projection

Cylindrical projection

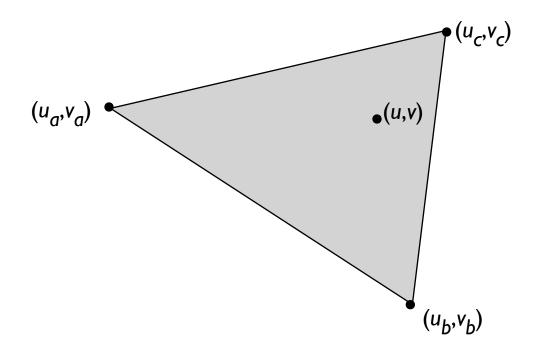


• Complex surfaces: project parts to parametric surfaces



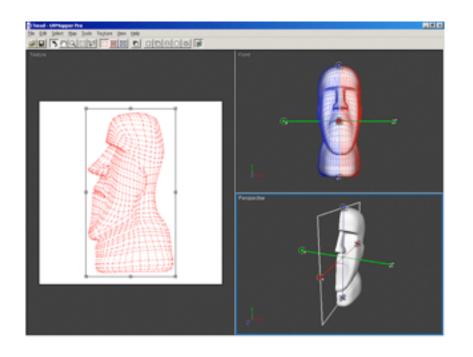
[Tito Pagan]

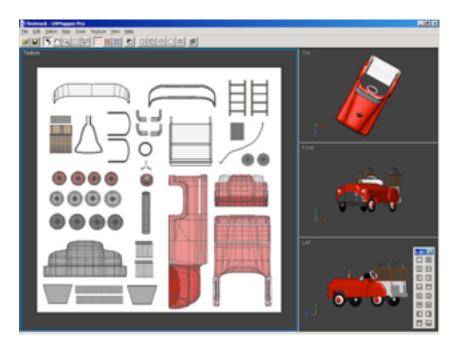
- Triangles
 - specify (u,v) for each vertex
 - define (u,v) for interior by linear (barycentric) interpolation

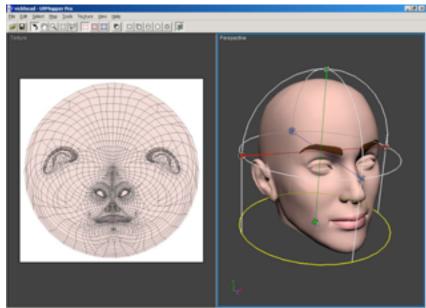


Example: UVMapper

http://www.uvmapper.com



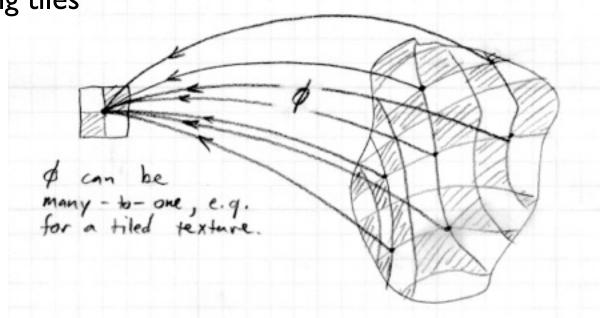




Texture coordinate functions

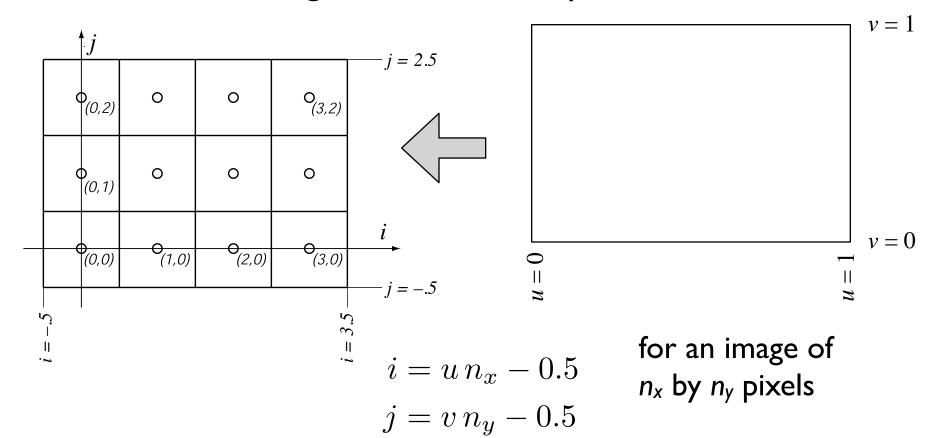
- Mapping from S to D can be many-to-one
 - that is, every surface point gets only one color assigned
 - but it is OK (and in fact useful) for multiple surface points to be mapped to the same texture point

e.g. repeating tiles



Pixels in texture images (texels)

 Related to texture coordinates in the same way as normalized image coordinate to pixel coordinates

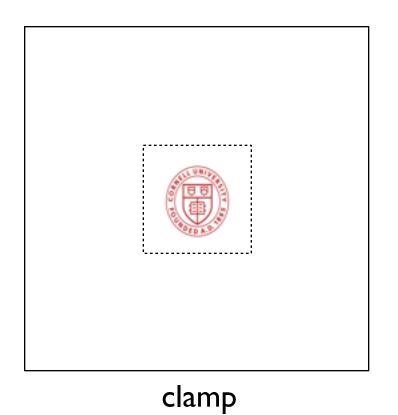


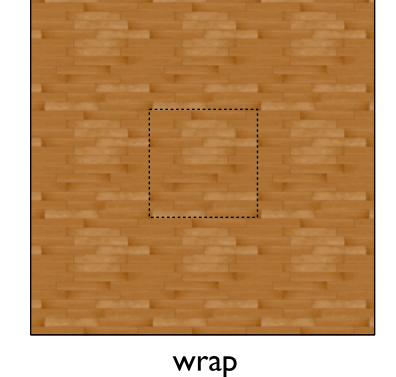
Texture lookups and wrapping

- In shading calculation, when you need a texture value you perform a texture lookup
- Convert (u, v) texture coordinates to (i, j) texel coordinates, and read a value from the image
 - simplest: round to nearest (nearest neighbor lookup)
 - various ways to be smarter and get smoother results
- What if i and j are out of range?
 - option I, clamp: take the nearest pixel that is in the image $i_{\rm pixel} = \max(0, \min(n_x 1, i_{\rm lookup}))$
 - option 2, wrap: treat the texture as periodic, so that falling off the right side causes the look up to come in the left

$$i_{\text{pixel}} = \text{remainder}(i_{\text{lookup}}, n_x)$$

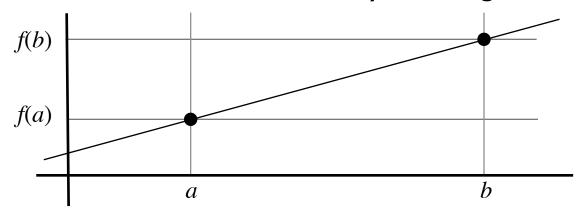
Wrapping modes





Linear interpolation, ID domain

 Given values of a function f(x) for two values of x, you can define in-between values by drawing a line



See Shirley Sec. 2.6

- there is a unique line through the two points
- can write down using slopes, intercepts
- ...or as a value added to f(a)
- ...or as a convex combination of f(a) and f(b)

$$f(x) = f(a) + \frac{x - a}{b - a} (f(b) - f(a))$$
$$= (1 - \beta)f(a) + \beta f(b)$$
$$= \alpha f(a) + \beta f(b)$$

Linear interpolation in ID

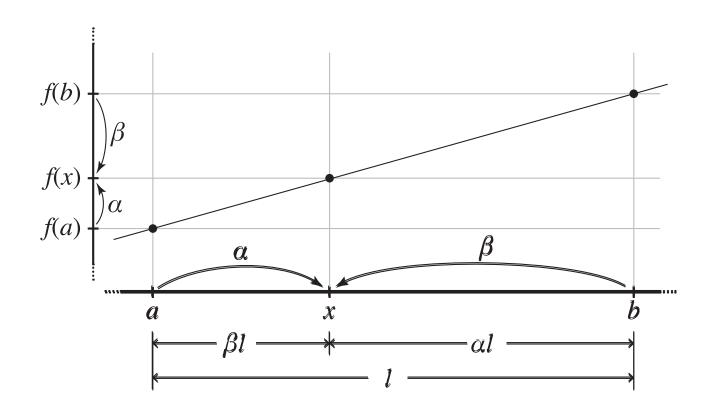
- Alternate story
 - I. write x as convex combination of a and b

$$x = \alpha a + \beta b$$
 where $\alpha + \beta = 1$

2. use the same weights to compute f(x) as a convex combination of f(a) and f(b)

$$f(x) = \alpha f(a) + \beta f(b)$$

Linear interpolation in ID



Linear interpolation in 2D

- Use the alternate story:
 - I. Write **x**, the point where you want a value, as a convex linear combination of the vertices

$$\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$
 where $\alpha + \beta + \gamma = 1$

2. Use the same weights to compute the interpolated value $f(\mathbf{x})$ from the values at the vertices, $f(\mathbf{a})$, $f(\mathbf{b})$, and $f(\mathbf{c})$

$$f(\mathbf{x}) = \alpha f(\mathbf{a}) + \beta f(\mathbf{b}) + \gamma f(\mathbf{c})$$

See Shirley Sec. 2.7

Interpolation in ray tracing

- When values are stored at vertices, use linear (barycentric) interpolation to define values across the whole surface that:
 - I....match the values at the vertices
 - 2. ... are continuous across edges
 - 3. ...are piecewise linear (linear over each triangle) as a function of 3D position, not screen position—more later
- How to compute interpolated values
 - I. during triangle intersection compute barycentric coords
 - 2. use barycentric coords to average attributes given at vertices

Texture coordinates on meshes

- Texture coordinates become per-vertex data like vertex positions
 - can think of them as a second position: each vertex has a position in 3D space and in 2D texure space
- How to come up with vertex (u,v)s?
 - use any or all of the methods just discussed
 - in practice this is how you implement those for curved surfaces approximated with triangles
 - use some kind of optimization
 - try to choose vertex (u,v)s to result in a smooth, low distortion map

A refined definition

Texture mapping: a set of techniques for defining functions on surfaces, for a variety of uses.

 Let's look at some examples of more general uses of texture maps.

3D textures

• Texture is a function of (u, v, w)

can just evaluate texture at 3D surface point

- good for solid materials
- often defined procedurally

