CS 4620 PA 1: Basic Ray Tracer

out: Sep 9, 2011
due: Sep 23, 2011

1 Introduction

Ray tracing is a simple and powerful algorithm for rendering images. Within the accuracy of the
scene and shading models and with enough computing time, the images produced by a ray tracer
can be physically accurate and can appear indistinguishable from real images'. Your ray tracer will
not be able to produce physically accurate images, but it will be capable of rendering basic geometry
as well as more complex mesh models consisting of smaller triangle meshes. Your ray tracer will
also support recursive ray tracing to produce more realistic results when rendering transparent or
reflective materials.

Due to this semester’s tight schedule, a more populated framework code is provided to save you
from spending time on class hierarchy design, and rather to have you focus on implementing the
core ray tracing components. However, you also have the freedom to redesign the system as long as
your ray tracer meets our requirements and produce the same images for given scenes.

2 Requirement Overview

Your ray tracer will read files in an XML file format and output PNG images. We have split the
ray tracing assignment into two parts. For now you will implement "basic ray tracing". Later in the
semester (in PA 3) you will implement advanced features in ray tracing. We will release a single
code base to you that you will build on for both parts. In the code base the code for Part A and Part
B are clearly marked. For now ignore everything for Part B. In this document we will focus on what
you need to implement for Part A.

It should support the features given below.

1. Basic geometry. Spheres, cylinders, cones, and axis-aligned boxes, which can be transformed
under geometric transformations.(Shirley 4.4,13.2 and Homework 1)

2. Basic shader. Implement Lambertian and Blinn-Phong shaders (Shirley 4.5, 10.1-10.2)

3. Basic shadows. Add “direct illumination” with shadowing by implementing point lights with
shadows.

!Cornell pioneered research in accurate rendering. See http://www.graphics.cornell.edu/online/box/compare.html for
the famous Cornell box, which exists in Rhodes Hall.



4. Basic viewing. Arbitrary perspective projections as described in the file format below.

3 Implementation

We have divided the assignment into two parts A and B. Once you have finished part A, your ray
tracer should be able to render a scene with basic geometry and basic shaders.

3.1 PartA

We have marked all the functions or parts of the functions you need to complete in part A with
TODO (A) in the source code. To see all these TODO’s in Eclipse, select Search menu, then File
Search and type “TODO (A7) .” The following explanations are to give you a rough overview of the
tasks. Most instructions, however, are provided in the comments in the source code.

1. Camera.java. This class represents the camera in the scene. You need to complete two
functions which will initialize the camera’s basis and return a ray corresponding to a given
pixel position in the rendered image. Note that projNormal and viewDir are anti-parallel to
each other in our examples (and hence redundant), and further, projNormal is perpendicular to
the image plane. This is all we expect in the examples we will use to test your implementation.

However, you are welcome to both implement and try out settings where this is not the case
to support oblique camera viewing.

2. RayTracerjava. Once you have completed Camera.java, you need to find out a way to call
your camera class to shoot the correct ray to the scene.

3. Box.java. This class is a subclass of Surface. It contains minPt and maxPt, which are
3D points. If the two points are (Zmin, Ymin, Zmin) a0d (Zmax, Ymax, Zmax) then the box is
[Zmin, Tmax] X [Ymin, Ymax] X [Zmin, Zmax)- The only function you need to complete for part
A is the intersect () method which will take the shooting ray as input and return true
if the ray hits the box. Moreover, this function will fill an IntersectionRecord whose
information will be used later on.

4. Sphere.java. This class is a subclass of Surface. It contains center, a 3D point, and
radius, areal number. The only function you need to complete for part A isthe intersect
method which performs a similar task to the intersect () in Box.java.

5. Cylinderjava. This class is a subclass of Surface. It contains center, a 3D point, and
radius, height, both real numbers. The only function you need to complete for part A is
the intersect method which performs a similar task to the intersect () in Box.java.
Assume that the cylinder is capped, i.e., the top and bottom have caps (it is not a hollow
tube). Also, assume it is aligned with the z-axis, and is centered around center; i.e., if

center is (centery, center,, center,), the cylinder’s z-extent is from center, — hnght to
height
.

center, +

6. Cone.java. This class is a subclass of Surface. It contains center, a 3D point, and height
and 6, which are both real numbers. The only function you need to complete for part A is the
intersect method which performs a similar task to the intersect () in Cylinder.java.



This is a truncated cone; again assume it is capped (both at the top and bottom). The cone
is centered at center, its axis is along the z-axis, the cylinder’s z-extent is from center, —
% to center, + %. Further, if the cone were to go to a point, the angle it would make
is 6. See the figure. Note that you will have to work out the correct # and height to make

the cone converge to a tip.

7. Lambertian.java and Phong.java. In these two classes, you need to complete shade ()
method which will shade the material using the information from IntersectionRecord,
light sources, and eye’s position.

Z-axis

center helght

Figure 1: Truncated Cone

4 Framework

The rest of the framework is described at the end of this document in Appendix A. You do not
need to spend time trying to understand it and it is not essential to read this to get started on the
assignment. Instead, you can reference it as needed.

S Handing in

All submissions will be through CMS. We will also use CMS to schedule demo slots to grade the
ray tracer as we get closer to the due date. We will post clarifications on Piazza if needed.



6 Appendix A

The framework for this assignment includes a simple main program, some utility classes for vector
math, a parser for the input file format, and stubs for the classes that are required by the parser.

6.1 Parser

The Parser class contains a simple parser based on Java’s built-in XML parsing. The parser
simply reads a XML document and instantiates an object for each XML entity, adding it to its
containing element by calling set... or add... methods on the containing object.

For instance, the input

<scene>
<surface type="Sphere">
<shader type="Lambertian">
<diffuseColor>0 0 1</diffuseColor>
</shader>
<center>1l 2 3</center>
<radius>4</radius>
</surface>
</scene>

results in the following construction sequence:

1. Create the scene.

2. Create an object of class Sphere and add it to the scene by calling Scene .addSurface.
This is OK because Sphere extends the Surface class.

3. Create an object of class Lambert ian and add it to the sphere using Sphere.setShader.
This is OK because Lambertian implements the Shader interface.

4. Call setDiffuseColor (new Color (0, 0, 1)) onthe shader.
5. Call setCenter (new Point3D (1, 2, 3)) on the sphere

6. Call setRadius (4) on the sphere.

Which elements are allowed where in the file is determined by which classes contain appropriate
methods, and the types of those methods’ parameters determine how the tag’s contents are parsed
(as a number, a vector, etc.). There is more detail for the curious in the header comment of the
Parser class.

The practical result of all this is that your ray tracer is handed a scene that contains objects that are
in one-to-one correspondence with the elements in the input file. You shouldn’t need to change the
parser in any way.



6.2 RayTracer

This class holds the entry point for the program. The main method is provided, so that your
program will have an command-line interface compatible with ours. It treats each command line
argument as the name of an input file, which it parses, renders an image, and writes the image to a
PNG file. The method RayTracer.renderImage is called to do the actual rendering.

6.3 Image

This class contains an array of £1oats and the requisite code to get and set pixels and to output the
image to a PNG file.

6.4 The ray.math package

This package contains classes to represent 2D and 3D points and vectors, as well as RGB colors.
They support all the standard vector arithmetic operations you’re likely to need, including dot and
cross products for vectors and gamma correction for colors.

6.5 Other classes

The other classes in the framework all exist because they are required in order for the parser to
decode files in the input format described above. Since the XML entities in the file correspond
directly to Java objects constructed by the parser, there is a class for every type of XML tag that
can appear in the file, including Scene, Image, Camera, Light; Surface and its subtypes
Sphere, Box, Cylinder, and Cone; and Shader and its subtypes Lambertian and Phong.
These classes generally contain only the fields and set/add methods required to implement the file
format.

6.6 File format

The input file for your ray tracer is in XML. An XML file contains sequences of nested elements
that are delimited by HTML-like angle-bracket tags. For instance, the XML code:

<scene>
<camera> </camera>
<surface type=Sphere>
<center>1.0 2.0 3.0</center>
</surface>
</scene>

contains four elements. One is a scene element that contains two others, called camera and
surface. The surface element has an attribute named type that has the value Sphere. It
also contains a center element that contains the text “1.0 2.0 3.0”, which in this context would be
interpreted as the 3D point (1,2, 3).



An input file for the ray tracer always contains one scene element, which is allowed to contain
tags of the following types:

e surface: This element describes a geometric object. It must have an attribute t ype with
value Sphere or Box. It can contain a shader element to set the shader, and also geometric
parameters depending on its type:

— for sphere: center, containing a 3D point, and radius, containing a real number.

— forbox: minPt and maxPt, each containing a 3D point. If the two points are (Zmin, Ymin, Zmin)
and (leaxv Ymax, Zmax) then the box is [xmina 1‘max] X [ymim ymax] X [Zmina Zmax]-

— for cylinder: center, containing a 3D point, radius and height, each containing
a real number.

— for cone: center, containing a 3D point, height, and 6, each containing a real
number.

e camera: This element describes the camera. It is described by the following elements:

- viewPoint, a 3D point that specifies the center of projection.

— viewDir, a 3D vector that specifies the direction toward which the camera is looking.
Its magnitude is not used.

— viewUp, a 3D vector that is used to determine the orientation of the image.

— projNormal, a 3D vector that specifies the normal to the projection plane. Its magni-
tude is not used. By default it is anti-parallel to view direction.

— projDistance, a real number d giving the distance from the center of the image
rectangle to the center of projection.

— viewWidth and viewHeight, two real numbers that give the dimensions of the
viewing window on the image plane.

— image: This element is just a pair of integers that specify the size of the image in pixels.

The camera’s view is determined by the center of projection (the viewpoint) and a view win-
dow of size viewWidth by viewHeight. The window’s center is positioned along the
view direction at a distance d from the viewpoint. It is oriented in space so that it is perpen-
dicular to the image plane normal and its top and bottom edges are perpendicular to the up
vector.

e light: This element describes a light. It contains the 3D point position and the RGB
color color.

e shader: This element describes how a surface should be shaded. It must have an attribute
type with value Lambertian or Phong. The Lambertian shader uses the RGB color
diffuseColor, and the Phong shader additionally uses the RGB color specularColor
and the real number exponent. A shader can appear inside a surface element, in which case
it applies to that surface. It can also appear directly in the scene, which is useful if you want
to give it a name and refer to it later from inside a surface (see below).

If the same object needs to be referenced in several places, for instance when you want to use one
shader for many surfaces, you can use the attribute name to give it a name, then later include a
reference to it by using the attribute re £. For instance:



<shader type="Lambertian" name="gray">
<diffuseColor>0.5 0.5 0.5</diffuseColor>
</shader>
<surface type="Sphere">
<center>0 0 0</center>
<shader ref="gray"/>
</surface>
<surface type="Sphere">
<center>5 0 0</center>
<shader ref="gray"/>
</surface>

applies the same shader to two spheres.

Really, the file format is very simple and from the examples we provide you should have no trouble
constructing any scene you want.



