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Texture maps viewed in perspective create a difficult antialiasing problem.  A single polygon 
spanning a large range of depths can result in both strong magnification of texture in the fore-
ground and extreme shrinkage, or “minification,” of texture in the background.  This means that, 
unlike in the image resampling discussed in Chapter 4, the filter used for antialiasing needs to be 
very different in different areas of the image.  This breaks the regular, efficient separable filtering 
procedure that works so well for applying the same filter everywhere when reducing and enlarg-
ing images.  For textures, we need a filtering scheme that can efficiently compute averages of 
varying-size areas of the texture.

The goal of texture filtering, like any other antialiasing procedure, is to compute the average 
value of the image over an area around each pixel.  We could compute this average by supersam-
pling in image space: take many sample points spread over the pixel’s rectangle, transform them 
all into texture space, sample the texture, and average.  This would produce quite accurate results.  
However, in cases of extreme texture minification, a great many samples would be needed, which 
would be too expensive, and many samples would be wasted for areas without a lot of fine detail. 

Another way to think of texture filtering is in terms of averages in texture space, rather than im-
age space.  For the commonly used box filtering, computing the average value of a pixel is 
(nearly) the same as computing the average value of the texture over the area that projects into a 
one-pixel-wide square.  The texture content that projects into that square area comes from a 
quadrilateral-shaped region in the texture map, known as the footprint of the pixel:

This is the way most texture filtering methods think about the problem: we have to compute the 
average value of a texture over some region that will be different for every pixel.  A range of dif-
ferent methods is available, each making different quality-speed tradeoffs: the filtered texture val-



ues can be computed faster if we are willing to compromise on the area being averaged.  The 
most widely used approach is called the mip map, which tries to get the size of the footprint right 
but does not worry about the shape.

The idea of the mip map (mip stands for “multim in parvo,” reputed to mean “many things in a 
small space”) is to pre-compute an image pyramid, which is a set of copies of the texture image, 
each scaled down by a factor of two compared to the previous one.  Then each of these scaled-
down textures can be used directly whenever the effective size of the texture in the output image 
is about the same as the scaled-down mipmap texture:

In this example, the original texture map, which is the base level of the mip map, or “level 0,” is 
256 texels (a texel is a texture pixel) square, and the first scaled-down texture, called “mip map 
level 1” is 128 texels square, and so forth.  Any time a shading procedure is supposed to sample a 
texture at texture coordinates (u, v), it can just as easily sample level d of the mip map instead (at 
the same texture coordinates), thereby automatically getting a version of the texture that is aver-
aged over a square area of size 2d by 2d.  The front face of the front cube is about 128 pixels high 
in the image, so it should be textured by sampling at level 1; the next cube is farther away and 
appears about 64 pixels high, so it should use level 2, and so forth.  Since the mip map is precom-
puted, there is no additional cost compared to just point-sampling the texture (corresponding to 
always using level 0).  You can think of the mip map as being three-dimensional: you sample at 
the texture coordinates (u, v, d), where u and v tell where in the texture you’re sampling, and d 
tells what level of detail you want.

Usually one computes d as a real number.  Rounding it to select a mip map level can produce no-
ticeable jumps between levels, so it’s common to linearly interpolate: sample both levels floor(d) 
and ceil(d), then interpolate linearly between the results.  When combined with bilinear interpola-
tion within each mip map level, this is trilinear interpolation, and it requires fetching 8 pixel val-
ues from the mip map data.

The one important piece that is still missing is: how do we know what value to use for d?  If we 
are displaying front-facing rectangles like the ones in this example, it’s easy enough to see what d 
should be, but what about the general case of a texture on a polygon viewed in perspective, or a 
curved surface?  One approach would be to match the area of the mip map lookup to the area of 



the quardilateral footprint.  We know a pixel at level d covers an area 22d (measured in terms of 
the pixels of the original (level 0) texture map).  If we find that the area of the footprint is A, then 
we can match the area by using

d = log2 (sqrt(A)).      (1)

Unfortunately, finding the quadrilateral explicitly and computing its area is a somewhat awkward 
computation.  Since so much has already been approximated, we can instead linearize: find the 
derivatives of the texture coordinates u and v with respect to the screen coordinates x and y, and 
approximate the footprint with a parallelogram whose axes are defined by those derivatives:

This amounts to using the first-order Taylor expansion of the functions u(x, y) and v(x, y) around 
the point u0, v0 that is the image of the point x0, y0 under the texture coordinate function:

u(x, y) ≈ u0 + (∂u/∂x)(x− x0) + (∂u/∂y)(y − y0)
v(x, y) ≈ v0 + (∂v/∂x)(x− x0) + (∂v/∂y)(y − y0)

and mapping the pixel’s 1-by-1 square through that approximation.  The area of this parallelo-
gram is 

A = |(∂u/∂x)(∂v/∂y)− (∂u/∂y)(∂v/∂x)|

(Another way to see this: it is the determinant of the Jacobian of the 2D to 2D texture coordinate 
function.)  With Eq. (1) this approach gives us a mip map level.  It’s straightforward to work out 
the formulas for the four partial derivatives, given the projective matrix that transforms (x, y) to 
(u, v).

An advantage of working from the derivative is that the same procedure then generalizes to situa-
tions where the mapping is not projective—e.g. texture maps on curved surfaces, or texture maps 
used as reflection maps.

It’s important to realize that the computation of d from the derivatives is a heuristic: no matter 
what level we choose, the filter footprint will be dramatically wrong when the texture is stretched 



anisotropically so that the correct footprint is very elongated.  Another common heuristic is to use 
length of the longer of the vectors dx and dy in the figure, which is more conservative: it tries to 
make the mip map area large enough to entirely contain the elongated pixel footprint.

In my examples I have used a base texture with a power-of-two size.  This is convenient but not 
necessary: we can just round off the sizes each time we halve the image dimensions (OpenGL 
rounds down), and proceed as usual, using a decent resampling filter to compute the almost-
exactly-half-size image.  As long as we keep track of the size of each level, sampling each level is 
just like sampling any other texture: u and v are between 0 and 1, and we find the texel coordi-
nates based on the actual size of the mip map at the level we’re looking at.

Many real systems based on rasterization take advantage of the fact that the rasterizer has already 
computed the increments in u, v, and w for single-pixel increments in x and y.  These can be used 
to compute approximations of the partial derivatives used to compute d, and they are often used 
instead of analytically computing the derivatives.


