Pipeline and Rasterization

CS4620 Lecture 9

Cornell CS4620 Fall 2008 • Lecture 9

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner •

© 2008 Steve Marschner • 3

The graphics pipeline

- The standard approach to object-order graphics
- Many versions exist
 - software, e.g. Pixar's REYES architecture
 - · many options for quality and flexibility
 - hardware, e.g. graphics cards in PCs
 - amazing performance: millions of triangles per frame
- We'll focus on an abstract version of hardware pipeline
- "Pipeline" because of the many stages
 - very parallelizable
 - leads to remarkable performance of graphics cards (many times the flops of the CPU at ~1/5 the clock speed)

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 2

Pipeline you are here COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION FRAGMENTS blending, compositing, shading FRAGMENT PROCESSING FRAMEBUFFER IMAGE USER Sees this DISPLAY

Primitives

- Points
- Line segments
 - and chains of connected line segments
- Triangles
- And that's all!
 - Curves? Approximate them with chains of line segments
 - Polygons? Break them up into triangles
 - Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
 - simple, uniform, repetitive: good for parallelism

Cornell CS4620 Fall 2008 • Lecture 9

Rasterization

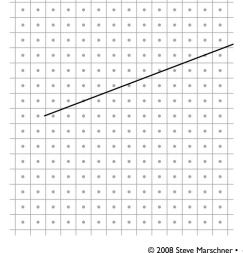
- First job: enumerate the pixels covered by a primitive
 - simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - e.g. colors computed at vertices
 - e.g. normals at vertices
 - will see applications later on

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 5

Rasterizing lines

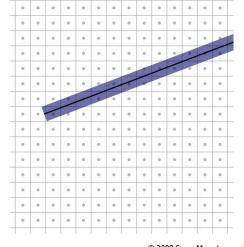
- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside



Cornell CS4620 Fall 2008 • Lecture 9

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

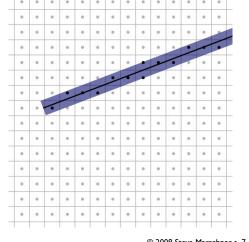


Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 6

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels

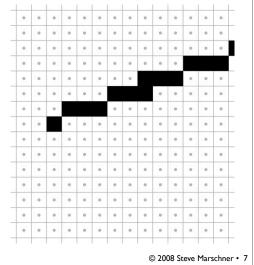


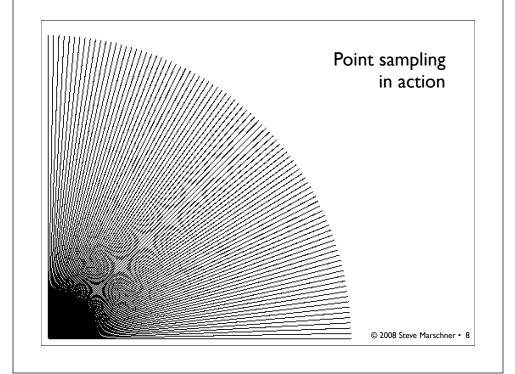
Cornell CS4620 Fall 2008 • Lecture 9

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels

Cornell CS4620 Fall 2008 • Lecture 9

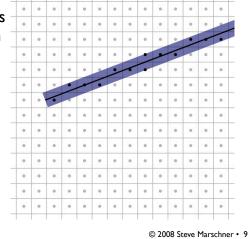




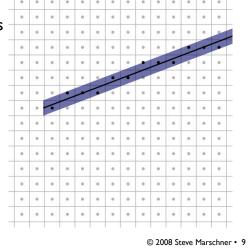
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

Cornell CS4620 Fall 2008 • Lecture 9



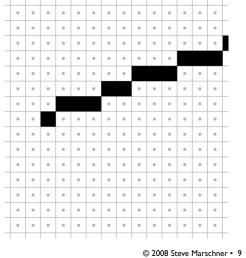
- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner



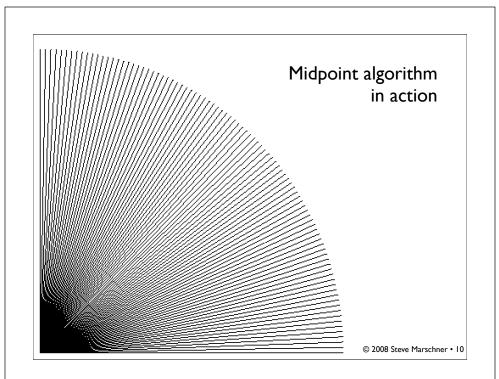
Cornell CS4620 Fall 2008 • Lecture 9

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner



Cornell CS4620 Fall 2008 • Lecture 9

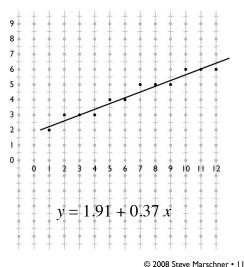


Algorithms for drawing lines

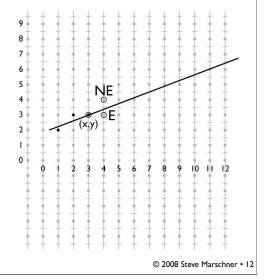
- line equation: y = b + m x
- Simple algorithm: evaluate line equation per column
- W.l.o.g. $x_0 < x_1$; 0 < m < 1

for x = ceil(x0) to floor(x1) v = b + m * xoutput(x, round(y))

Cornell CS4620 Fall 2008 • Lecture 9



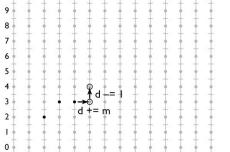
- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- d = m(x + 1) + b y
- d > 0.5 decides between E and NE



Cornell CS4620 Fall 2008 • Lecture 9

Optimizing line drawing

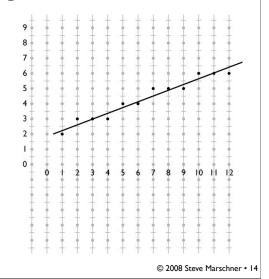
- d = m(x + 1) + b y
- Only need to update 7 d for integer steps in x and y
- Do that with addition
- Known as "DDA" (digital differential analyzer)



Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner •

Midpoint line algorithm



Cornell CS4620 Fall 2008 • Lecture 9

Linear interpolation

- We often attach attributes to vertices
 - e.g. computed diffuse color of a hair being drawn using lines
 - want color to vary smoothly along a chain of line segments
- Recall basic definition

- ID:
$$f(x) = (1 - \alpha) y_0 + \alpha y_1$$

- where
$$\alpha = (x - x_0) / (x_1 - x_0)$$

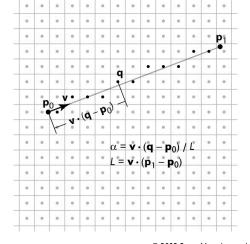
• In the 2D case of a line segment, alpha is just the fraction of the distance from (x_0, y_0) to (x_1, y_1)

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 15

Linear interpolation

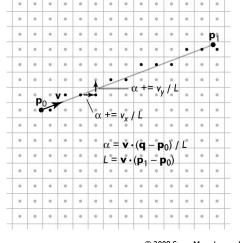
- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate



Cornell CS4620 Fall 2008 • Lecture 9

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use
 DDA to interpolate

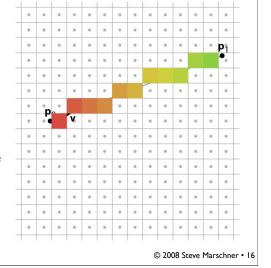


Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 16

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use
 DDA to interpolate



Cornell CS4620 Fall 2008 • Lecture 9

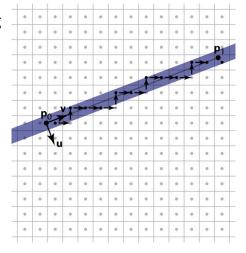
Alternate interpretation

- We are updating d and α as we step from pixel to pixel
 - d tells us how far from the line we are α tells us how far along the line we are
- So d and α are coordinates in a coordinate system oriented to the line

• View loop as visiting all pixels the line passes through Interpolate d and α for each pixel Only output frag. if pixel is in band

 This makes linear interpolation the primary operation

Cornell CS4620 Fall 2008 • Lecture 9

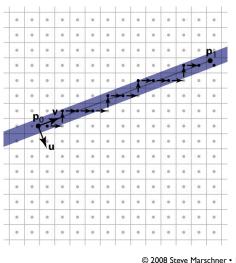


Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 17

Pixel-walk line rasterization

$$\begin{split} x &= ceil(x0) \\ y &= round(m*x+b) \\ d &= m*x+b-y \\ while & x < floor(x1) \\ if d &> 0.5 \\ y &= 1; d &= 1; \\ else \\ x &= 1; d &= m; \\ if &= 0.5 < d \le 0.5 \\ output(x,y) \end{split}$$



Cornell CS4620 Fall 2008 • Lecture 9

Rasterizing triangles

- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon's area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 20

Rasterizing triangles

- Input:
 - three 2D points (the triangle's vertices in pixel space)

•
$$(x_0, y_0)$$
; (x_1, y_1) ; (x_2, y_2)

- parameter values at each vertex

•
$$q_{00}, ..., q_{0n}; q_{10}, ..., q_{1n}; q_{20}, ..., q_{2n}$$

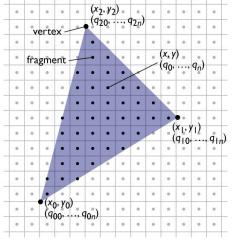
- Output: a list of fragments, each with
 - the integer pixel coordinates (x, y)
 - interpolated parameter values $q_0, ..., q_n$

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 21

Rasterizing triangles

- Summary
 - I evaluation of linear functions on pixel grid
 - 2 functions defined by parameter values at vertices
 - 3 using extra parameters to determine fragment set



Cornell CS4620 Fall 2008 • Lecture 9

Incremental linear evaluation

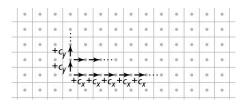
• A linear (affine, really) function on the plane is:

$$q(x,y) = c_x x + c_y y + c_k$$

• Linear functions are efficient to evaluate on a grid:

$$q(x+1,y) = c_x(x+1) + c_y y + c_k = q(x,y) + c_x$$

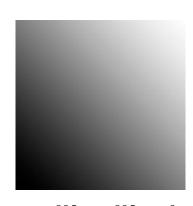
$$q(x,y+1) = c_x x + c_y(y+1) + c_k = q(x,y) + c_y$$



Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 23

Incremental linear evaluation



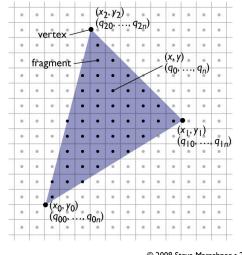
 $c_x = .005; c_y = .005; c_k = 0$ (image size 100x100)

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 24

Rasterizing triangles

- Summary
 - I evaluation of linear functions on pixel grid
 - 2 functions defined by parameter values at vertices
 - 3 using extra parameters to determine fragment set



Cornell CS4620 Fall 2008 • Lecture 9

@ 2008 Steve Marschner • 25

Defining parameter functions

- To interpolate parameters across a triangle we need to find the c_x , c_y , and c_k that define the (unique) linear function that matches the given values at all 3 vertices
 - this is 3 constraints on 3 unknown coefficients:

$$c_x x_0 + c_y y_0 + c_k = q_0$$
$$c_x x_1 + c_y y_1 + c_k = q_1$$

 $c_x x_2 + c_y y_2 + c_k = q_2$

(each states that the function agrees with the given value at one vertex)

- leading to a 3x3 matrix equation for the coefficients:

$$\begin{bmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{bmatrix} \begin{bmatrix} c_x \\ c_y \\ c_k \end{bmatrix} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \end{bmatrix}$$

(singular iff triangle is degenerate)

Cornell CS4620 Fall 2008 • Lecture 9

Defining parameter functions

• More efficient version: shift origin to (x_0, y_0)

$$q(x,y) = c_x(x - x_0) + c_y(y - y_0) + q_0$$

$$q(x_1, y_1) = c_x(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1$$

$$q(x_2, y_2) = c_x(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2$$

- now this is a 2x2 linear system (since q_0 falls out):

$$\begin{bmatrix} (x_1 - x_0) & (y_1 - y_0) \\ (x_2 - x_0) & (y_2 - y_0) \end{bmatrix} \begin{bmatrix} c_x \\ c_y \end{bmatrix} = \begin{bmatrix} q_1 - q_0 \\ q_2 - q_0 \end{bmatrix}$$

- solve using Cramer's rule (see Shirley):

$$c_x = (\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)$$

$$c_y = (\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)$$

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 27

Defining parameter functions linInterp(xl, xh, yl, yh, x0, y0, q0, x1, y1, q1, x2, y2, q2) { // setup det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0); cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det; cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det; qRow = cx*(x1-x0) + cy*(y1-y0) + q0; // traversal (same as before) for y = y1 to yh { qPix = qRow; for x = x1 to xh {

Cornell CS4620 Fall 2008 • Lecture 9

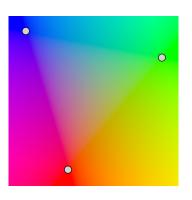
qRow += cy;

output(x, y, qPix);

qPix += cx;

© 2008 Steve Marschner • 28

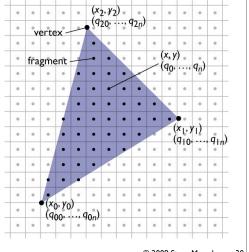
Interpolating several parameters



Cornell CS4620 Fall 2008 • Lecture 9 © 2008 Steve Marschner • 29

Rasterizing triangles

- Summary
 - I evaluation of linear functions on pixel grid
 - 2 functions defined by parameter values at vertices
 - 3 using extra parameters to determine fragment set



a = 0

Cornell CS4620 Fall 2008 • Lecture 9

Clipping to the triangle

- Interpolate three barycentric coordinates across the plane
 - each barycentric coord is
 I at one vert. and 0 at
 the other two
- Output fragments only when all three are > 0.

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 31

Barycentric coordinates

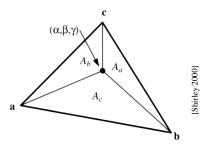
- A coordinate system for triangles
 - algebraic viewpoint:

$$\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

$$\alpha + \beta + \gamma = 1$$

- geometric viewpoint (areas):
- Triangle interior test:

$$\alpha > 0; \quad \beta > 0; \quad \gamma > 0$$

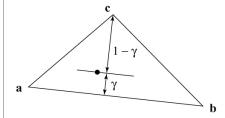


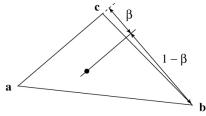
Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 32

Barycentric coordinates

- A coordinate system for triangles
 - geometric viewpoint: distances





- linear viewpoint: basis of edges

$$\alpha = 1 - \beta - \gamma$$

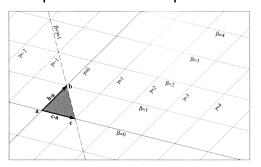
$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 33

Barycentric coordinates

• Linear viewpoint: basis for the plane



- in this view, the triangle interior test is just

$$\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1$$

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 34

[Shirley 2000]

Walking edge equations

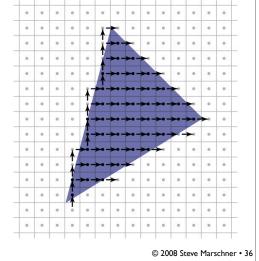
- We need to update values of the three edge equations with single-pixel steps in x and y
- Edge equation already in form of dot product
- components of vector are the increments

Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 35

Pixel-walk (Pineda) rasterization

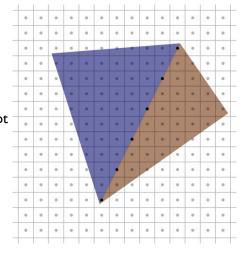
- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment



Cornell CS4620 Fall 2008 • Lecture 9

Rasterizing triangles

- Exercise caution with rounding and arbitrary decisions
 - need to visit these pixels once
 - but it's important not to visit them twice!



Cornell CS4620 Fall 2008 • Lecture 9

© 2008 Steve Marschner • 37

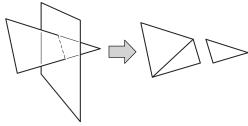
Clipping

- Rasterizer tends to assume triangles are on screen
 - particularly problematic to have triangles crossing the plane z=0
- After projection, before perspective divide
 - clip against the planes x, y, z = 1, -1 (6 planes)
 - primitive operation: clip triangle against axis-aligned plane

Cornell CS4620 Fall 2008 • Lecture 9

Clipping a triangle against a plane

- 4 cases, based on sidedness of vertices
 - all in (keep)
 - all out (discard)
 - one in, two out (one clipped triangle)
 - two in, one out (two clipped triangles)



Cornell CS4620 Fall 2008 • Lecture 9