
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	26	
Where’s	the	puck	going?

Rachit	Agarwal



Announcements

• Final:	05/12	@	7PM,	Hollister	Hall	B14	

• Make-up	projects	announced	this	morning	

• Extra	practice	problems:	by	Sunday	

• Prelim	solutions	posted	

• Practice	Finals	posted	(along	with	solutions)	

• Problem	solving	sessions:	Tuesday	+		

• Tuesday:	during	the	lecture	hours;	same	location	

• Lost	sessions:	thanks	for	using;	makes	me	happy	about	my	experiments	

• Please	fill	out	the	course	evaluations	
• Easy	way	to	get	5%	
• Please	be	constructive	(evaluations	are	for	many	eyes,	not	just	me)

2



Recap:	Canonical	Datacenter	Interconnect

3

Diameter,	Bisection	Width,	Bisection	Bandwidth,	Oversubscription	

Core (L3)

Edge (L2) 
Top-of-Rack  
 

Aggregation (L2)

Application 
servers



Recap:	Observations	from	the	Interconnect

• Link	utilization	low	at	edge	and	aggregate	level	

• Core	most	utilized	

• Hot-spots	exist	(>	70%	utilization)	
• <	25%	links	are	hotspots	
• Loss	occurs	on	less	utilized	links	(<	70%)	
• Implicating	momentary	bursts	

• Time-of-Day	variations	exists	

• Variation	an	order	of	magnitude	larger	at	core

4



Recap:	What	is	REALLY	different		

when	compared	to	the	Internet?

5



What	is	REALLY	different	from	the	Internet

• Single	entity	owns	everything,	from	the	OS	to	the	network	hardware	

• Discussion:	how	could	we	exploit	this	property?	

• Link	Layer	and	Network	Layer	
• Increasingly	less	separation	between	the	two	layers	
• Do	we	still	need	BGP?	
• Could	we	still	use	BGP?	

• Transport	Layer?	
• A	lot	of	failure	modes	of	TCP	go	away	(OS	owned	by	Google)	

• Is	TCP	still	a	good	solution?

6



What	is	REALLY	different	from	the	Internet

• Fixed	(structured)	topology,	complete	control	and	knowledge	

• Discussion:	how	could	we	exploit	this	property?	

• Link	Layer	and	Network	Layer	
•More	efficient	algorithms	for	route	computation	

• Could	“bake	in”	routing	results	into	switch	routing	tables	
• Software-defined	networks,	centralized	control	
• Other	benefits:	

• Better	control	over	“load	balancing”		
• Avoid	convergence	issues	(but	new	issues	come	up)	

• Transport	Layer?	
•We	never	made	any	assumptions	about	topology	in	L4	design	

• Is	TCP	still	a	good	idea?

7



What	is	REALLY	different	from	the	Internet

• Small-scale,	within	a	single	geographic	location	

•	The	entire	datacenter	is	may	be	1M	machines,	in	a	single	location	

• Discussion:	how	could	we	exploit	this	property?	

• Link	Layer	and	Network	Layer?	
• Another	motivating	factor	for	centralized	control	

• Routes	can	be	computed	and	“installed”	quickly	

• Transport	layer?	
• Next	slide	…

8



What	is	REALLY	different	from	the	Internet

• Tiny	round	trip	times	

• 	Less	than	5	microseconds	(for	a	single	packet)	

• Discussion:	how	could	we	exploit	this	property?	

• Link	Layer	and	Network	Layer?	
•Millisecond-level	convergence	times	no	longer	“sufficient”	

• Even	more	motivation	for	software-defined,	centralized	control	

• Transport	layer?	
•Most	flows	small;	can	be	completed	within	a	couple	of	RTT	

• Even	3-way	hand-shake	could	have	high	overheads	
• TCP	is	not	going	to	work	well!

9



TCP	in	datacenter	context

• TCP	is	too	inefficient	
• Three-way	handshake	takes	too	long	

• Does	not	work	well	with	short	flows	

• Not	designed	for	low	latency	

• Has	no	notion	of	deadlines	

• Queue	build-up	due	to	long	flows;	short	flows	suffer

10



Datacenter	Transport	Design:	

One	of	the	most	active	research	areas

11



Taking	25	steps	back!

12



A	set	of	network	elements	connected	together,	that	implement	a	set	of	
protocols	for	the	purpose	of	sharing	resources	at	the	end	hosts

What	is	a	computer	network?



Sharing	networks

• Two	approaches	
• Reservation	(circuit	switching)	
• Statistical	multiplexing	(packet	switching)	

• Motivation	for	WHY	modern	networks	use	“packets”	

• How	to	implement	this?

14



• Application	opens	a	socket	that	allows	it	to	connect	to	the	network	stack	

• Maps	name	of	the	web	site	to	its	address	using	DNS	

• The	network	stack	at	the	source	embeds	the	address	and	port	for	both	
the	source	and	the	destination	in	packet	header	

• Each	router	constructs	a	routing	table	using	a	distributed	algorithm	

• Each	router	uses	destination	address	in	the	packet	header	to	look	up	the	
outgoing	link	in	the	routing	table	

• And	when	the	link	is	free,	forwards	the	packet		

• When	a	packet	arrives	the	destination:		

• The	network	stack	at	the	destination	uses	the	port	to	forward	the	
packet	to	the	right	application

The	end-to-end	story



• How	to	break	system	into	modules	

• Layering	

• Where	are	modules	implemented	

• End-to-End	Principle	

• Where	is	state	stored?	
• Fate-Sharing

Realizing	end-to-end	design:	Three	Principles



• Application:	Providing	network	support	for	apps	

• Transport	(L4):	(Reliable)	end-to-end	delivery	

• Network	(L3):	Global	best-effort	delivery	

• Datalink	(L2):	Local	best-effort	delivery	

• Physical:	Bits	on	wire

Five	Layers	(Top	-	Down)



• Broadcast	medium:	Ethernet	and	CSMA/CD	

• We	studied	that	Broadcast	Ethernet	does	not	scale	to	large	networks	

• Motivation	for	switched	Ethernet	

• Broadcast	storm:	if	using	broadcast	on	switched	Ethernet	

• Motivation	for	Spanning	Tree	Protocol	

• Limitations	of	Spanning	Tree	Protocol:		

• Low	bandwidth	utilization,	high	latency,	unnecessary	processing	
• Does	not	scale	to	the	entire	Internet	
• Motivation	for	routing	protocols	in	the	Internet

Link	Layer	(L2)



• Internet	Protocol:		
• Addressing,	packet	header	as	an	interface,	routing	

• Routing	tables:	
• Correctness	and	validity:	Dead	ends,	loops	
• A	collection	of	spanning	trees,	one	per	destination	

• Constructing	valid	routing	tables	(within	an	ISP)	
• Link-state	and	distance-vector	protocols	
• Focused	a	lot	on	learning	via	examples	

• Can	still	have	loops:	failures	remain	to	be	a	pain	

• How	to	use	routing	tables	
• Packet	header	as	an	interface	
• Learnt	why	packet	headers	look	like	the	way	they	do

Network	Layer	(L3)



• Internet	Protocol:		
• Addressing,	packet	header	as	an	interface,	routing	

• Addressing:	
• Link	layer	uses	“flat”	addresses	
• Does	not	scale	to	Internet:	motivation	for	IP	addresses		

• Scalability	challenges:	Routing	table	sizes,	#updates	
• Solution:	Hierarchical	addressing	

• Forwarding	
• Switch	architecture	
• Longest	Prefix	matching	for	forwarding	at	line	rate	

• Scheduling	using	priorities	

Network	Layer	(L3),	Cont.



• Internet	Protocol:		
• Addressing,	packet	header	as	an	interface,	routing	

• Limitations	of	link-state	and	distance-vector	routing:	

• Require	visibility	of	the	entire	Internet	
• ISPs	do	not	like	that:	motivation	for	Inter-domain	routing	

• Border	Gateway	Protocol	
• A	simple	modification	of	distance-vector	protocol		

• Routing	with	policies	
• Customer-provider-peer	relationships	

• Gao-Rexford	policies	

• Completes	the	network	layer:	provides	connectivity

Network	Layer	(L3),	Cont.



• DHCP:	Dynamic	Host	Configuration	Protocol	

• For	each	host	to	figure	out	its	IP	address,	local	DNS,	first-hop	router	

• ARP:	Address	Resolution	Protocol	
• For	finding	other	servers	on	the	same	local	area	network	(L2)	

• Mapping	from	IP	addresses	to	names	(MAC	addresses)	

• Domain	Name	System	

• Mapping	Human	readable	destination	names	to	IP	addresses	

• Hierarchical	structure

Details	for	complete	picture



• Goals	of	reliable	transport	
• Correctness	condition	
• Why	do	we	need	ACKs,	timers,	window-based	design	

• One	realization	of	reliable	transport:	TCP	
• Mostly	implementation	details	following	the	above	design	

• For	max-min	fairness,	flow	performance	and	utilization	

• Flow	control	
• Ensuring	the	sender	does	not	overwhelm	the	receiver	

• Via	receiver	advertised	window	size	
• Congestion	control	

• Ensuring	the	sender	does	not	overwhelm	the	network	

• Slow	start,	Additive-increase	Multiplicative-decrease,	timeouts

Transport	Layer



Taking	1	step	forward!

24



Skate	where	the	puck’s	going,	
not	where	it’s	been!	

-	Walter	Gretzky



Memory	bus		
(80	GB/s)

PCIe		
(1x16	GB/s)

SATA	
(0.05-0.1	GB/s)Et

he
rn
et
	

(1
.2
5	
G
B/
s)

Size	
(TB)

Random	
Access	
(us)

Seq.	
Access	
(GB/s)

0.1 0.1 80

1 25 1x

10 4000 0.1x

Where	is	the	puck	right	now?



Memory	bus		
(80	GB/s)

PCIe		
(1x16	GB/s)

SATA	
(0.05-0.1	GB/s)Et

he
rn
et
	

(1
.2
5	
G
B/
s)

Where	is	the	puck	going?



2016:	+10%

2016:	+18-20%

Where	is	the	puck	going?	(CPU	performance)



• #Cores:	+18-20%	

• Per	core:	+10%
Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32%

Where	is	the	puck	going?



+29%

Where	is	the	puck	going?	(DRAM	capacity)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

Where	is	the	puck	going?



+15%

Where	is	the	puck	going?	(Memory	bus)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

+15%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

Where	is	the	puck	going?



Ba
nd

w
id
th
	p
er
	la
ne

	(G
bp

s)

0

4

8

12

16

Year

2002 2004 2006 2008 2010 2012 2014 2016 2018

+15%

Where	is	the	puck	going?	(PCIe)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

+15%

+15%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

+20%

Where	is	the	puck	going?



+33-40%

Where	is	the	puck	going?	(Ethernet)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

+15%

+15%

+20%

+33-40%

Where	is	the	puck	going?



Powerful	

implications

• Unsustainable	CPU	overheads	of	network	stacks	

• End-to-end	latency	dominated	by	queueing	delay	

• Remote	memory	faster	than	local	SSD	

• When	queueing	delay	=	0

Network	Technology	Trends

0

25

50

75

100

2005 2010 2018 2023

Bandwidth



Unsustainable	CPU	overheads

0

25

50

75

100

2005 2010 2018 2023

Bandwidth

• Existing	network	stacks	were	designed	for	1Gbps	networks	
• Known	TCP	problem:	~3.2Gbps	per	core	

• With	low-level	optimizations:	~9-12Gbps	per	core	

• 40Gbps	would	take	>3	cores	per	server!	
• 100Gbps	would	take	>8	cores	per	server!!	

• Take	away:	unsustainable	cloud	economics	

• Every	core	used	for	the	stack	is	a	core	stolen	from	applications/
customers



0

25

50

75

100

2005 2010 2018 2023

Bandwidth

~2005	(1Gbps) 2018	(40Gbps)

Latency	(us) %	
Contri

Latency	(us) %

OS 1.90 10 1.70 27

Data	copy 2.00 10 2.00 32

Switching 2.70 14 1.44 23

Propagaron	delay 0.88 5 0.88 13

Transmission	delay 11.44 61 0.29 5

TOTAL 18.92 6.30

Queueing	
(4MB	buffers,	64	ports)

488.3	
(per	congesnon	point)

12.21	
(per	congesnon	point)

Curse	of	queueing	delay

~2005	(1Gbps) 2018	(40Gbps)

Latency	(us) %	
Contri

Latency	(us) %

TOTAL 18.92 6.30

Queueing	
(4MB	buffers,	64	ports)

488.3	
(per	congesnon	point)

12.21	
(per	congesnon	point)

• Take	away:	queueing	delay	is	the	core	bottleneck	
• End-to-end	latency	bottlenecked	by	queueing	delay



0

25

50

75

100

2005 2010 2018 2023

Bandwidth

• Under	zero	queueing:	
• Remote	memory	access	takes	less	than	6.3us	

• Local	SSD	access	latency	today	is	25us	(hardware,	ignoring	stack)	
• Remote	Direct	Memory	Access	(RDMA)	becomes	feasible	

• However,	RDMA	requires	lossless	network	fabric	

• Known	problem	with	RDMA	over	Ethernet:	congestion	collapse	

• Take	away:	RDMA	applicability	limited	by	drops	in	network	fabric

Remote	Memory	Faster	than	Local	Storage



• Lot	of	research	in	“hardware	offload”	
• Implementing	TCP	(and	other	mechanisms)	on	hardware	

• Lots	of	interesting	challenges	

• Lot	of	research	in	low-latency	transport	design	
• TCP	was	not	designed	for	low	latency	
• New	transport	protocols	for	ultra	low-latency	

• Lot	of	research	in	kernel-bypass	
• TCP	requires	processing	each	and	every	packet	
• 1Gbps	links:	90,000	packets	per	second	
• 100Gbps	links:	9	million	packets	per	second	

• Extremely	high	CPU	requirements	

• Bypass	the	kernel	entirely		
• Implement	congestion	control	in	user	space,	in	hardware?

Current	Network	Stacks	are	the	Bottleneck!




