Problem Set 1 Question 1

a) How many 0.5 Mbps circuits can simultaneously be supported between A and B ? Which links would they use?

- Identify possible paths

$$
\begin{aligned}
& \text { } A-C-B \\
& \text { - } A-D-B \\
& \cdot \\
& \text { - } A-C-D-B
\end{aligned}
$$

Problem Set 1 Question 1

a) How many 0.5 Mbps circuits can simultaneously be supported between A and B ? Which links would they use?

- Identify possible paths

$$
\begin{aligned}
& \text { • } A-C-B \\
& \text { - } A-D-B \\
& \cdot \\
& \text { - }-C-D-B
\end{aligned}
$$

- Identify bottleneck on each path

$$
\begin{array}{ll}
-A-C-B & 4 \mathrm{Mbps} \\
\text { - } & \mathbf{A}-\underline{D}-B \\
\text { - } & 4 \mathrm{Mbpps} \\
\hline \mathbf{C}-\mathrm{D}-\mathrm{B} & 1 \mathrm{Mbps}
\end{array}
$$

Problem Set 1 Question 1

a) How many 0.5 Mbps circuits can simultaneously be supported between A and B? Which links would they use?

- Identify possible paths

$$
\begin{aligned}
& A-C-B \\
- & A-D-B \\
- & A-C-D-B
\end{aligned}
$$

- Identify bottleneck on each path

$$
\begin{aligned}
& \text { - A-C-B } 4 \mathrm{Mbps} \\
& \text { - A-D-B } 4 \mathrm{Mbps} \\
& \text { - A-C-D-B } 1 \text { Mbps }
\end{aligned}
$$

- Check that shared links can support combined bandwidth
- Here, A - C and D - B are shared. Both support combined 5 Mbps .

Problem Set 1 Question 1

a) How many 0.5 Mbps circuits can simultaneously be supported between A and B ? Which links would they use?

- Calculate total number of circuits

Problem Set 1 Question 1

b) How many 0.5 Mbps circuits can simultaneously be supported between C and D? Which links would they use?

- Possible paths:

$$
\begin{aligned}
& \text { - } \underline{C-B} \text { - D } 4 \text { Mbps } \\
& \text { - } C-A-D \quad 4 \mathrm{Mbps} \\
& \text { - } \mathbf{C - D} \\
& 1 \text { Mbps }
\end{aligned}
$$

- No shared links to check

$$
\frac{4+4+1 \text { Mbps }}{0.5 \text { Mbps per circuit }}=18 \text { circuits }
$$

Problem Set 1 Question 1

c) Suppose circuits between A-B and C-D are established simultaneously. What is the maximum number of circuits?

- Possible paths:

$$
\begin{aligned}
& \text { - A-C-B } 4 \mathrm{Mbps} \\
& \text { - A-D-B } 4 \mathrm{Mbps} \\
& \text { - A-C-D-B } 1 \text { Mbps } \\
& \text { - C-B-D } 4 \mathrm{Mbps} \\
& \text { - C-A-D } 4 \mathrm{Mbps} \\
& \text { - C-D } \\
& 1 \text { Mbps }
\end{aligned}
$$

- If we assign each path bandwidth equal to its bottleneck, some links are overused.
- Must assign bandwidth to each path such that shared links are fully utilized

Problem Set 1 Question 1

c) Suppose circuits between $A-B$ and $C-D$ are established simultaneously. What is the maximum number of circuits?

- One possible assignment:

$$
\begin{aligned}
& \text { - A-C-B } 2 \text { Mbps } \\
& \text { - A-D-B } 2 \text { Mbps } \\
& \text { - A-C-D - O } \mathbf{~ - ~} 5 \mathrm{Mbps} \\
& \text { - } \mathrm{C}-\mathrm{B}-\mathrm{D} \quad 2 \mathrm{Mbps} \\
& \text { - } C-\underline{A}-D \quad 2 \mathrm{Mbps} \\
& \text { - } \underline{C-D} \\
& \text { 0.5 Mbps }
\end{aligned}
$$

- All links can support their total bandwidth under this assignment.

$$
\frac{2+2+0.5+2+2+0.5 \mathrm{Mbps}}{0.5 \mathrm{Mbps} \text { per circuit }}=18 \text { circuits }
$$

Problem Set 1 Question 2

a) Calculate the total time to transfer a 1 KB packet over a link with propagation delay of 5 ms and bandwidth of 100 Kbps .

$$
\begin{aligned}
& \text { TD }=\frac{1 \mathrm{~KB}}{100 \mathrm{Kbps}}=\frac{8 \mathrm{~Kb}}{100 \mathrm{Kbps}}=0.08 \mathrm{~s}=80 \mathrm{~ms} \\
& \text { Total Time }=T D+P D=80 \mathrm{~ms}+5 \mathrm{~ms}=\mathbf{8 5} \mathbf{~ m s}
\end{aligned}
$$

Problem Set 1 Question 2

b) Calculate the total time to transfer a 1 KB packet over a link with propagation delay of 5 ms and bandwidth of 1 Mbps .

$$
T D=\frac{1 \mathrm{~KB}}{1 \mathrm{Mbps}}=\frac{8 \mathrm{~Kb}}{1024 \mathrm{Kbps}}=0.00781 \mathrm{~s}=7.81 \mathrm{~ms}
$$

$$
\text { Total Time }=T D+P D=7.81 \mathrm{~ms}+5 \mathrm{~ms}=\mathbf{1 2 . 8 1} \mathbf{m s}
$$

Problem Set 1 Question 2

c) Calculate the total time to transfer a 1 KB packet over a link with propagation delay of 5 ms and bandwidth of 10 Mbps .

$$
\begin{aligned}
& T D=\frac{1 \mathrm{~KB}}{10 \mathrm{Mbps}}=\frac{8 \mathrm{~Kb}}{10240 \mathrm{Kbps}}=0.000781 \mathrm{~s}=0.781 \mathrm{~ms} \\
& \text { Total Time }=T D+P D=0.781 \mathrm{~ms}+5 \mathrm{~ms}=\mathbf{5 . 7 8 1} \mathrm{ms}
\end{aligned}
$$

Problem Set 1 Question 2

d) Plot the transmission and propagation delays for parts a-c. At what bandwidth will the propagation delay equal the transmission delay?

$$
T D=\frac{8 K b}{x}=5 \mathrm{~ms}
$$

$$
x=\frac{8 \mathrm{~Kb}}{0.005 s}=1600 \mathrm{Kbps}
$$

Problem Set 1 Question 2

Round-Trip Time (RTT):
In this problem, an acknowledgment bit is sent immediately once the first bit of a packet is received. There is no transmission delay to send this bit. The propagation delay is 5 ms . How long is the RTT in this problem?

$$
R T T=2 * P D=10 \mathrm{~ms}
$$

Problem Set 1 Question 2

e) Assume the bandwidth is 1 Mbps, but we must wait 1 RTT between sending the first bit of consecutive 1 KB packets. How long does it take to transmit a 2000 KB file?

- We must wait a full RTT after sending the first 1999 packets
- Once the $2000^{\text {th }}$ packet is done being transmitted and propagated, we are finished.

$$
T D=\frac{1 \mathrm{~KB}}{1 \mathrm{Mbps}}=\frac{8 \mathrm{~Kb}}{1024 \mathrm{Kbps}}=7.81 \mathrm{~ms}
$$

$$
\begin{aligned}
\text { Total Time } & =1999 * R T T+T D+P D \\
& =1999 * 10+7.81+5 \mathrm{~ms} \\
& \approx 20 \mathrm{~s}
\end{aligned}
$$

Problem Set 1 Question 2

f) Assume the bandwidth is infinite (no transmission delay) and 20 packets can be sent per RTT.

- How many "batches" do we need?

$$
\frac{2000 \text { Packets }}{20 \text { packets per batch }}=100 \text { batches }
$$

- We need to wait a full RTT for the first 99 batches, and then only the propagation delay for the last batch.

$$
\begin{aligned}
\text { Total Time } & =99 * R T T+P D \\
& =99 * 10+5 \mathrm{~ms} \\
& =995 \mathrm{~ms}
\end{aligned}
$$

Problem Set 1 Question 2

g) Assume the bandwidth is infinite. During the $\mathrm{n}^{\text {th }}$ RTT, we can send 2^{n-1} packets.

- How many "batches" do we need?
- After the $\mathrm{n}^{\text {th }}$ RTT, we have sent $2^{0}+2^{1}+\cdots+2^{n-1}=2^{n}-\mathbf{1}$ packets.
- After 10 RTTs, we have sent 1023 packets. The $11^{\text {th }}$ RTT is the last one.

$$
\begin{aligned}
\text { Total Time } & =10 * R T T+P D \\
& =10 * 10+5 \mathrm{~ms} \\
& =105 \mathrm{~ms}
\end{aligned}
$$

Problem Set 1 Question 3

a) How long does it take to send a 1 KB packet from node A to C and back? Packets propagate at $3^{*} 10^{8} \mathrm{~m} / \mathrm{s}$.

$$
\begin{gathered}
\text { A } \\
T D_{A B}=\frac{\text { Packet Size }}{\text { Bandwidth }}=\frac{1 \mathrm{~KB}}{2 \mathrm{Mbps}}=\frac{8 \mathrm{~Kb}}{2048 \mathrm{Kbps}}=3.91 \mathrm{~ms} \\
P D_{A B}=\frac{\text { Distance }}{\text { Speed }}=\frac{90 \mathrm{~km}}{3 * 10^{8} \mathrm{~m} / \mathrm{s}}=\frac{90 * 10^{3} \mathrm{~m}}{3 * 10^{8} \mathrm{~m} / \mathrm{s}}=0.30 \mathrm{~ms} \\
T D_{B C}=7.81 \mathrm{~ms} \quad P D_{B C}=1.00 \mathrm{~ms} \\
\text { Total Time }=2 *\left(T D_{A B}+P D_{A B}+T D_{B C}+P D_{B C}\right) \\
\text { Total Time }=2 *(3.91+0.30+7.81+1.00)=\mathbf{2 6 . 0 4} \mathbf{~ m s}
\end{gathered}
$$

Problem Set 1 Question 3

b) Assume a 1 KB packet is sent from A to C. Immediately after, a 3 KB packet is sent from A to C as well. How long would it take for C to receive the second packet?

Problem Set 1 Question 3

c) Assume two 1 KB packets are sent from A to C back to back. How long would it take for C to receive the second packet?

- Draw a parallelogram diagram!
- Since $T D_{B C}(1 K B)>T D_{A B}(1 K B)$ there is queuing delay.

$$
Q D=T D_{B C}(1 K B)-T D_{A B}(1 K B)
$$

- Total delay:

$$
\begin{aligned}
& T D_{A B}(1 K B)+T D_{A B}(1 K B)+P D_{A B}+ \\
& Q D+T D_{B C}(1 K B)+P D_{B C}
\end{aligned}
$$

Problem Set 1 Question 3

d) Suppose a packet of B bytes is sent from A to C. A second packet is sent immediately after. What is the minimum size of the second packet such that there is no queuing delay?

$$
\begin{gathered}
Q D=T D_{B C}(\text { Packet } 1)-T D_{A B}(\text { Packet } 2) \leq 0 \\
T D_{A B}(\text { Packet } 2) \geq T D_{B C}(\text { Packet } 1) \\
\frac{x}{2 M b p s} \geq \frac{B}{1 M b p s} \rightarrow x \geq 2 B
\end{gathered}
$$

Problem Set 2 Question 1

- Nodes A and B are using CSMA/CD to share an Ethernet link.
- After frames A_{1} and B_{1} collide, A wins the back off race and successfully transmits A_{1}.
- Frame A_{2} then collides with B_{1} 's first retransmission attempt.

Problem Set 2 Question 1

a) If frame A_{2} is on its first retransmission attempt, and frame B_{1} is on its second attempt, what is the probability that A_{2} wins this back off race?

- A_{2} can select from time slots 0 and 1 .
- B_{1} can select from time slots $0,1,2$, and 3 .
- There are 8 total combinations. A_{2} wins in the following combinations:

$$
(0,1)(0,2)(0,3)(1,2)(1,3)
$$

- A_{2} wins in $5 / 8$ combinations, so it has a $5 / 8$ chance of winning.

Problem Set 2 Question 1

b) If frame A_{3} is on its first retransmission attempt, and frame B_{1} is on its third attempt, what is the probability that A_{3} wins this back off race?

- A_{3} can select from time slots 0 and 1 .
- B_{1} can select from time slots $0-7$.
- There are 16 total combinations. There are only three in which A_{3} does not win:

$$
(0,0)(1,0)(1,1)
$$

- A_{3} wins in $13 / 16$ combinations, so it has a $13 / 16$ chance of winning.

Problem Set 2 Question 1

c) Given that A wins the first three back off races, what is a lower bound for the probability that A wins all of the remaining back off races?

$$
\begin{aligned}
& P(A \text { wins race } 2)=\frac{5}{8} \geq \frac{1}{2} \\
& P(A \text { wins race } 3)=\frac{13}{16} \geq \frac{3}{4} \\
& P(A \text { wins race } n)=1-\frac{3}{2^{n+1}} \geq 1-\frac{1}{2^{n-1}} \\
& P(A \text { wins remaining races })=\prod_{i=4}^{\infty}\left(1-\frac{1}{2^{n-1}}\right)
\end{aligned}
$$

Problem Set 2 Question 1

d) If B continues to lose back off races indefinitely, what happens to frame B_{1} ?

Eventually, B gives up on sending B_{1} and moves on to B_{2}.

Problem Set 2 Question 2

a) A and B are both trying to transmit a single packet over Ethernet and collide. What is the probability of either A or B succeeding on the $(k+1)^{\text {th }}$ exponential back off attempt?

- A or B will succeed as long as they don't both select the same slot.
- In the $(\mathrm{k}+1)^{\text {th }}$ attempt, there are 2^{k} time slots to pick from. The probability of failure is therefore $\frac{1}{2^{k}}$.
- The probability of success is $P_{k}=1-\frac{1}{2^{k}}$

Problem Set 2 Question 2

b) Let S_{k} be the probability of success after at most $k+1$ attempts. Write \mathbf{S}_{k} in terms of k .

$$
\begin{aligned}
P_{k} & =1-\frac{1}{2^{k}} \\
S_{k} & =1-\prod_{i=1}^{k}\left(1-P_{i}\right)=1-\prod_{i=1}^{k} \frac{1}{2^{i}} \\
& =1-\frac{1}{2} * \frac{1}{4} * \frac{1}{8} * \cdots * \frac{1}{2^{k}}=1-\frac{1}{2^{\frac{k(k+1)}{2}}}
\end{aligned}
$$

Problem Set 2 Question 2

c) Let S be the probability of success eventually, after an arbitrary number of collisions. Calculate S .

$$
\begin{aligned}
& S_{k}=1-\frac{1}{2^{\frac{k(k+1)}{2}}} \\
& S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty} 1-\frac{1}{2^{\frac{k(k+1)}{2}}}=1
\end{aligned}
$$

Eventually, either A or B will win.

Problem Set 2 Question 2

Parts d) - f) use a non-uniform probability for selecting a slot.
Later slots are more likely to be selected.
$P=\left\{p, 2 p, 3 p, 4 p, \ldots, 2^{k} p\right\}$
$p+2 p+3 p+4 p+\cdots+2^{k} p=1$

Problem Set 2 Question 2

d) Calculate the probability of success in the second attempt.

$$
\begin{aligned}
& p+2 p=1 \rightarrow p=\frac{1}{3} \\
& \overline{P_{1}}=p * p+2 p * 2 p=5 p^{2}=\frac{5}{9} \\
& P_{1}=1-\overline{P_{1}}=1-\frac{5}{9}=\frac{4}{9}
\end{aligned}
$$

Problem Set 2 Question 2

e) Calculate the probability of success in the third attempt, as well as the probability of success in either the second or third attempt.

$$
\begin{aligned}
& p+2 p+3 p+4 p=1 \rightarrow p=\frac{1}{10}=0.1 \\
& \overline{P_{2}}=p^{2}+4 p^{2}+9 p^{2}+16 p^{2}=30 p^{2}=30 * 0.01=0.3 \\
& P_{2}=1-\overline{P_{2}}=1-0.3=0.7 \\
& S_{2}=1-\overline{P_{1}} * \overline{P_{2}}=1-\frac{5}{9} * \frac{3}{10}=1-\frac{1}{6}=\frac{5}{6}
\end{aligned}
$$

Problem Set 2 Question 2

f) Write P_{k} and S_{k} in terms of k

$$
\begin{aligned}
& p+2 p+\cdots+2^{k} p=1 \rightarrow \frac{2^{k}\left(2^{k}+1\right)}{2} p=1 \rightarrow p=\frac{1}{2^{k-1}\left(2^{k}+1\right)} \\
& \overline{P_{k}}=p^{2}\left(1^{2}+2^{2}+3^{2}+\cdots+2^{2 k}\right)=p^{2} * \frac{2^{k}\left(2^{k}+1\right)\left(2^{k+1}+1\right)}{6} \\
& \overline{P_{k}}=\frac{2^{k-1}\left(2^{k}+1\right)\left(2^{k+1}+1\right)}{3 *\left(2^{k-1}\left(2^{k}+1\right)\right)^{2}}=\frac{2^{k+1}+1}{3 * 2^{k-1}\left(2^{k}+1\right)} \\
& P_{k}=1-\overline{P_{k}}
\end{aligned}
$$

Problem Set 2 Question 2

f) Write P_{k} and S_{k} in terms of k

$$
\overline{P_{k}}=\frac{2^{k+1}+1}{3 * 2^{k-1}\left(2^{k}+1\right)}
$$

$$
S_{k}=1-\prod_{i=1}^{k} \overline{P_{k}}
$$

$$
S_{k}=1-\frac{2^{2}+1}{3 * 2^{0}\left(2^{1}+1\right)} * \frac{2^{3}+1}{3 * 2^{1}\left(2^{2}+1\right)} * \cdots * \frac{2^{k+1}+1}{3 * 2^{k-1}\left(2^{k}+1\right)}
$$

$$
S_{k}=1-\frac{2^{k+1}+1}{3^{k} * 2^{0+1+2+\cdots+k-1}\left(2^{1}+1\right)}=1-\frac{2^{k+1}+1}{3^{k+1} * 2^{\frac{(k-1) k}{2}}}
$$

Problem Set 2 Question 2

g) If there are three stations sharing an Ethernet link (using uniform probabilities during the back-off race), can we use the same method used in parts a-c to calculate P_{k} and S_{k} ?

- Because there are three nodes, there is new complexity.
- Assume that in one back-off race, A and B collide, while C picks a later slot.
- A and B now move on to the next race, but either one could still collide with C (which is still in the previous race).
- We can no longer calculate a discrete P_{k} for each race.

Problem Set 2 Question 3

a) Which ports are selected by the spanning tree algorithm?

Problem Set 2 Question 3

a) Which ports are selected by the spanning tree algorithm?

Round 1

	Receive	Send	Next- hop
1		$(1,0,1)$	1
2		$(2,0,2)$	2
3		$(3,0,3)$	3
4		$(4,0,4)$	4
5		$(5,0,5)$	5
6		$(6,0,6)$	6
7		$(7,0,7)$	7

Problem Set 2 Question 3

a) Which ports are selected by the spanning tree algorithm?

Round 2		Receive	Send	Next-hop
	1	$(3,0,3)(7,0,7)$		1
	2	$\begin{gathered} (3,0,3)(5,0,5) \\ (7,0,7) \end{gathered}$		2
	3	$\begin{gathered} (1,0,1)(2,0,2) \\ (4,0,4)(5,0,5) \\ (6,0,6) \end{gathered}$	$(1,1,3)$	1
	4	$(3,0,3)(6,0,6)$	$(3,1,4)$	3
	5	$(2,0,2)(3,0,3)$	$(2,1,5)$	2
	6	$(3,0,3)(4,0,4)$	$(3,1,6)$	3
	7	$(1,0,1)(2,0,2)$	$(1,1,7)$	1

Problem Set 2 Question 3

a) Which ports are selected by the spanning tree algorithm?

Round 3		Receive	Send	Next-hop
	1	$(1,1,3)(1,1,7)$		1
	2	$\begin{gathered} (1,1,3)(2,1,5) \\ (1,1,7) \end{gathered}$	$(1,2,2)$	3
	3	$\begin{gathered} (3,1,4)(2,1,5) \\ (3,1,6) \end{gathered}$		1
	4	$(1,1,3)(3,1,6)$	$(1,2,4)$	3
	5	$(1,1,3)$	$(1,2,5)$	3
	6	$(1,1,3)(3,1,4)$	$(1,2,6)$	3
	7			1

Problem Set 2 Question 3

a) Which ports are selected by the spanning tree algorithm?

Round 4

Problem Set 2 Question 3

a) Which ports are selected by the spanning tree algorithm?

	Distance	Next-hop
1	0	1
2	2	3
3	1	1
4	2	3
5	2	3
6	2	3
7	1	1

Problem Set 2 Question 3

a) Which ports are selected by the spanning tree algorithm?

	Distance	Next-hop
1	0	1
2	2	3
3	1	1
4	2	3
5	2	3
6	2	3
7	1	1

Problem Set 3 Question 1

Suppose we have a network in which all links cost 1. Give the smallest network consistent with these two forwarding tables:

A		
Node	Cost	Nexthop
B	1	B
C	1	C
D	2	B
F	2	C
Node	Cost	Nexthop
A	2	C
B	3	C
C	1	C
D	2	C
E	1	E

Problem Set 3 Question 1

Suppose we have a network in which all links cost 1. Give the smallest network consistent with these two forwarding tables:

- A must be directly connected to B and C (both have cost 1).

Problem Set 3 Question 1

Suppose we have a network in which all links cost 1. Give the smallest network consistent with these two forwarding tables:

- A must be directly connected to B and C (both have cost 1).
- F is directly connected to C and E

Problem Set 3 Question 1

Suppose we have a network in which all links cost 1. Give the smallest network consistent with these two forwarding tables:

- A must be directly connected to B and C (both have cost 1).
- F is directly connected to C and E
- D must connect to both B and C

Problem Set 3 Question 2

a) Give the routing tables for this network such that each packet is forwarded via the lowest-cost path.

Example: C's routing table

Dest.	Cost	Next Hop
A	3	A
B	3	E
D	5	E
E	1	E
F	6	F

Problem Set 3 Question 2

b) Assume link C-E fails. Give the forwarding tables after C and E report the news.

A		
Dest.	Cost	Next Hop
B	6	C
C	3	C
D	6	C
E	4	C
F	9	C

D		
Dest.	Cost	Next Hop
A	6	E
B	4	E
C	3	E
E	2	E
F	9	E

E		
Dest.	Cost	Next Hop
A	A	C
B	2	B
C	1	C
D	2	D
F	7	C

F		
Dest.	Cost	Next Hop
A	9	C
B	9	C
C	6	C
D	9	C
E	7	C

Problem Set 3 Question 2

b) Assume link C-E fails. Give the forwarding tables after C and E report the news.

A		
Dest.	Cost	Next Hop
B	6	C
C	3	C
D	6	C
E	4	C
F	9	C

D		
Dest.	Cost	Next Hop
A	6	E
B	4	E
C	3	E
E	2	E
F	9	E

E		
Dest.	Cost	Next Hop
A	∞	-
B	2	B
C	∞	-
D	2	D
F	∞	-

F		
Dest.	Cost	Next Hop
A	9	C
B	9	C
C	6	C
D	9	C
E	7	C

Problem Set 3 Question 2

b) Assume link C-E fails. Give the forwarding tables after C and E report the news.

A		
Dest.	Cost	Next Hop
B	C	C
C	3	C
D	C	C
E	C	C
F	9	C

D		
Dest.	Cost	Next Hop
A	C	г
B	4	E
C	2	Σ
E	2	E
F	C	L

B		
Dest.	Cost	Next Hop
A	C	L
C	\ddots	L
D	4	E
E	2	E
F	G	L

C		
Dest.	Cost	Next Hop
A	3	A
B	∞	-
D	∞	-
E	∞	-
F	6	F

E		
Dest.	Cost	Next Hop
A	∞	-
B	2	B
C	∞	-
D	2	D
F	∞	-

F		
Dest.	Cost	Next Hop
A	9	C
B	C	C
C	6	C
D	S	C
E	7	C

Problem Set 3 Question 2

b) Assume link C-E fails. Give the forwarding tables after C and E report the news.

A		
Dest.	Cost	Next Hop
B	∞	-
C	3	C
D	∞	-
E	∞	-
F	9	C

B		
Dest.	Cost	Next Hop
A	∞	-
C	∞	-
D	4	E
E	2	E
F	∞	-

C		
Dest.	Cost	Next Hop
A	3	A
B	∞	-
D	∞	-
E	∞	-
F	6	F

D		
Dest.	Cost	Next Hop
A	∞	-
B	4	E
C	∞	-
E	2	E
F	∞	-

E		
Dest.	Cost	Next Hop
A	∞	-
B	2	B
C	∞	-
D	2	D
F	∞	-

F		
Dest.	Cost	Next Hop
A	9	C
B	∞	-
C	6	C
D	∞	-
E	∞	-

Problem Set 3 Question 2

b) Assume link C-E fails. Give the forwarding tables after C and E report the news.

A			B			C		
Dest.	Cost	Next Hop	Dest.	Cost	Next Hop	Dest.	Cost	Next Hop
B	∞	-	A	∞	-	A	3	A
C	3	c	C	∞	-	B	∞	-
D	∞	μ	Nodes A and D do not immediately fail over to their shared link.				∞	-
E	∞	-					∞	-
F	9	c					6	F
D							F	
Dest.	Cost	Next Hop					Cost	Next Hop
A	∞	-	A	∞	-	A	9	C
B	4	E	B	2	B	B	∞	-
C	∞	-	C	∞	-	C	6	c
E	2	E	D	2	D	D	∞	-
F	∞	-	F	∞	-	E	∞	-

Problem Set 3 Question 2

c) Give the forwarding tables after A and D's next mutual exchange.

A		
Dest.	Cost	Next Hop
B	12	D
C	3	C
D	8	D
E	10	D
F	9	C

B		
Dest.	Cost	Next Hop
A	∞	-
C	∞	-
D	4	E
E	2	E
F	∞	-

C		
Dest.	Cost	Next Hop
A	3	A
B	∞	-
D	∞	-
E	∞	-
F	6	F

D		
Dest.	Cost	Next Hop
A	8	A
B	4	E
C	11	A
E	2	E
F	17	A

E		
Dest.	Cost	Next Hop
A	∞	-
B	2	B
C	∞	-
D	2	D
F	∞	-

F		
Dest.	Cost	Next Hop
A	9	C
B	∞	-
C	6	C
D	∞	-
E	∞	-

Problem Set 3 Question 2

d) Give the forwarding tables after A exchanges with C.

A		
Dest.	Cost	Next Hop
B	12	D
C	3	C
D	8	D
E	10	D
F	9	C

B		
Dest.	Cost	Next Hop
A	∞	-
C	∞	-
D	4	E
E	2	E
F	∞	-

C		
Dest.	Cost	Next Hop
A	3	A
B	15	A
D	11	A
E	13	A
F	6	F

D		
Dest.	Cost	Next Hop
A	8	A
B	4	E
C	11	A
E	2	E
F	17	A

E		
Dest.	Cost	Next Hop
A	∞	-
B	2	B
C	∞	-
D	2	D
F	∞	-

F		
Dest.	Cost	Next Hop
A	9	C
B	∞	-
C	6	C
D	∞	-
E	∞	-

Problem Set 3 Question 3

a) Give the routing tables for this network when each node only knows the distances to its immediate neighbors.

Example: A's routing table

Dest.	Cost	Next Hop
B	2	B
C	∞	-
D	5	D
E	∞	-
F	∞	-

Problem Set 3 Question 3

b) Give the routing tables for this network after each node reports the information from the previous step to its neighbors

Example: A's routing table

Dest.	Cost	Next Hop
B	2	B
C	4	B
D	5	D
E	3	B
F	∞	-

Now, each node knows about paths with up to two hops.

Problem Set 3 Question 3

c) Give the routing tables for this network after step b happens a second time.

Example: A's routing table

Dest.	Cost	Next Hop
B	2	B
C	4	B
D	5	D
E	3	B
F	6	B

Now, each node knows about paths with up to three hops.

Problem Set 3 Question 3

d) Give the routing tables for this network after step b happens a third time.

Example: A's routing table

Dest.	Cost	Next Hop
B	2	B
C	4	B
D	5	D
E	3	B
F	6	B

All of the optimal paths in this network are three hops or fewer, so the routing tables do not change in this step.

Problem Set 3 Question 4

a) Give the routing tables of the following network

B		
Dest.	Cost	Next Hop
A	4	D
C	5	C
D	3	D
E	15	C

C		
Dest.	Cost	Next Hop
A	9	B
B	5	B
D	8	B
E	10	E

D		
Dest.	Cost	Next Hop
A	1	A
B	3	B
C	8	B
E	18	B

E		
Dest.	Cost	Next Hop
A	19	C
B	15	C
C	10	C
D	18	C

Problem Set 3 Question 4

b) What will happen if the link between B and D fails? (simplified to only examine messages between A and D)

B		
Dest.	Cost	Next Hop
A	1	D
C	5	C
D	\ddots	C
E	15	C

C		
Dest.	Cost	Next Hop
A	9	B
B	5	B
D	8	B
E	10	E

D		
Dest.	Cost	Next Hop
A	1	A
B	2	D
C	0	D
E	10	D

E		
Dest.	Cost	Next Hop
A	19	C
B	15	C
C	10	C
D	18	C

Problem Set 3 Question 4

b) What will happen if the link between B and D fails? (simplified to only examine messages between A and D)

Problem Set 3 Question 4

b) What will happen if the link between B and D fails?
(simplified to only examine messages between A and D)

B		
Dest.	Cost	Next Hop
A	∞	-
C	5	C
D	∞	-
E	15	C

C		
Dest.	Cost	Next Hop
A	9	B
B	5	B
D	8	B
E	10	E

D		
Dest.	Cost	Next Hop
A	1	A
B	5	A
C	10	A
E	20	A

E		
Dest.	Cost	Next Hop
A	19	C
B	15	C
C	10	C
D	18	C

Problem Set 3 Question 4

b) What will happen if the link between B and D fails? (simplified to only examine messages between A and D)

Problem Set 3 Question 4

b) What will happen if the link between B and D fails? (simplified to only examine messages between A and D)

B		
Dest.	Cost	Next Hop
A	∞	-
C	5	C
D	∞	-
E	15	C

C		
Dest.	Cost	Next Hop
A	9	B
B	5	B
D	8	B
E	10	E

D		
Dest.	Cost	Next Hop
A	1	A
B	$\mathbf{7}$	A
C	$\mathbf{1 2}$	A
E	$\mathbf{2 2}$	A

E		
Dest.	Cost	Next Hop
A	19	C
B	15	C
C	10	C
D	18	C

Problem Set 3 Question 4

c) If each node broadcasts its routing table every t seconds, how long does it take for routing tables to become stable?

B		
Dest.	Cost	Next Hop
A	∞	-
C	5	C
D	∞	-
E	15	C

C		
Dest.	Cost	Next Hop
A	9	B
B	5	B
D	8	B
E	10	E

D		
Dest.	Cost	Next Hop
A	1	A
B	19	A
C	24	A
E	34	A

E		
Dest.	Cost	Next Hop
A	19	C
B	15	C
C	10	C
D	18	C

Problem Set 3 Question 4

c) If each node broadcasts its routing table every t seconds, how long does it take for routing tables to become stable?

B		
Dest.	Cost	Next Hop
A	∞	-
C	5	C
D	∞	-
E	15	C

C		
Dest.	Cost	Next Hop
A	9	B
B	5	B
D	8	B
E	10	E

D		
Dest.	Cost	Next Hop
A	1	A
B	19	A
C	24	A
E	34	A

E		
Dest.	Cost	Next Hop
A	19	C
B	15	C
C	10	C
D	18	C

Problem Set 3 Question 4

c) If each node broadcasts its routing table every t seconds, how long does it take for routing tables to become stable?

Problem Set 3 Question 4

d) How does poisoned reverse fix this problem?

A (version sent to D)

B		
Dest.	Cost	Next Hop
A	∞	-
C	5	C
D	∞	-
E	15	C

C		
Dest.	Cost	Next Hop
A	9	B
B	5	B
D	8	B
E	10	E

D		
Dest.	Cost	Next Hop
A	1	A
B	∞	-
C	∞	-
E	∞	-

E		
Dest.	Cost	Next Hop
A	19	C
B	15	C
C	10	C
D	18	C

Problem Set 3 Question 4

d) How does poisoned reverse fix this problem?

Problem Set 3 Question 4

e) Identify a scenario where poisoned reverse fails.

A		
Dest.	Cost	Next Hop
B	4	D
C	9	D
D	1	D
E	19	D

B		
Dest.	Cost	Next Hop
A	4	D
C	5	C
D	3	D
E	15	C

D		
Dest.	Cost	Next Hop
A	1	A
B	3	B
C	8	B
E	18	B

Problem Set 3 Question 4

e) Identify a scenario where poisoned reverse fails.

A		
Dest.	Cost	Next Hop
B	4	D
C	9	D
D	1	D
E	19	D

B		
Dest.	Cost	Next Hop
A	4	D
C	29	A
D	3	D
E	39	A

D		
Dest.	Cost	Next Hop
A	1	A
B	3	B
C	8	B
E	18	B

Problem Set 3 Question 4

e) Identify a scenario where poisoned reverse fails.

B (version sent to D)

Dest.	Cost
A	∞
C	29
D	∞
E	39

A		
Dest.	Cost	Next Hop
B	4	D
C	9	D
D	1	D
E	19	D

B		
Dest.	Cost	Next Hop
A	4	D
C	29	A
D	3	D
E	39	A

D		
Dest.	Cost	Next Hop
A	1	A
B	3	B
C	32	B
E	42	B

Problem Set 3 Question 4

e) Identify a scenario where poisoned reverse fails.

D (version sent to A)

Dest.	Cost
A	∞
B	3
C	32
E	42

A		
Dest.	Cost	Next Hop
B	4	D
C	33	D
D	1	D
E	43	D

B		
Dest.	Cost	Next Hop
A	4	D
C	29	A
D	3	D
E	39	A

D		
Dest.	Cost	Next Hop
A	1	A
B	3	B
C	32	B
E	42	B

Problem Set 3 Question 4

e) Identify a scenario where poisoned reverse fails.

Because there is a loop, poisoned reverse is not enough to prevent counting to infinity.

A		
Dest.	Cost	Next Hop
B	4	D
C	33	D
D	1	D
E	43	D

B		
Dest.	Cost	Next Hop
A	4	D
C	29	A
D	3	D
E	39	A

D		
Dest.	Cost	Next Hop
A	1	A
B	3	B
C	32	B
E	42	B

Problem Set 4 Question 1

a) If the cost of each link is its latency, each node knows its neighbors at $\mathrm{t}=0$, and distance vectors are sent every 10 time units (starting at 0), what is node A's forwarding table at $t=6$?

- By $\mathrm{t}=6, \mathrm{~A}$ knows about routes that pass through B.

Dest.	Cost	Next Hop
B	5	B
C	10	B
D	30	D
E	∞	-

Problem Set 4 Question 1

a) What is node A 's forwarding table at $t=16$?

- At $t=5$, node B received C's table.
- At $t=10, B$ sends its updated
 routing table to A .
- By $\mathrm{t}=16$, A knows about routes that pass through B and C.

Dest.	Cost	Next Hop
B	5	B
C	10	B
D	15	B
E	30	B

Problem Set 4 Question 1

a) What is node A's forwarding table at $\mathbf{t}=26$?

- By $\mathrm{t}=26$, the faster path through D to reach E has had time to propagate to node A.

Dest.	Cost	Next Hop
B	5	B
C	10	B
D	15	B
E	17	B

Problem Set 4 Question 1

b) Node A receives a packet destined to node E at $\mathrm{t}=6 \mathrm{~s}$. What path does it take? What is its end-to-end latency?

- At $t=6$, A has no route to E and drops the packet.

Dest.	Cost	Next Hop
B	5	B
C	10	B
D	30	D
E	∞	-

Problem Set 4 Question 1

b) Node A receives a packet destined to node E at $\mathrm{t}=16 \mathrm{~s}$. What path does it take? What is its end-to-end latency?

- At $t=16, A$ sends the packet to node B expecting a cost of 30 .
- Node C sends the packet via D, since it heard about this shorter route at $\mathrm{t}=5$. The latency is 17 .

Dest.	Cost	Next Hop
B	5	B
C	10	B
D	15	B
E	30	B

Problem Set 4 Question 1

b) Node A receives a packet destined to node E at $\mathrm{t}=\mathbf{2 6 \mathrm { s } \text { . What } \mathrm { t }}$ path does it take? What is its end-to-end latency?

- At $t=26, A$ sends the packet to node B expecting a cost of 17 . This time the latency is indeed 17.

Dest.	Cost	Next Hop
B	5	B
C	10	B
D	15	B
E	17	B

Problem Set 4 Question 2

Valley-free paths:

A path that uses zero or more provider links, followed by at most one peer link, followed by zero or more customer links.

peer
peer

Problem Set 4 Question 2

Valley-free paths:

A path that uses zero or more provider links, followed by at most one peer link, followed by zero or more customer links.

In a valley-free path, each intermediate AS will make money, since one of their customers will be part of the path.

Problem Set 4 Question 2

a) In order to enforce valley-free paths, fill in whether a route imported from a given neighbor type should be exported to another neighbor type.

Route received from	Route sent to		
	Customer	Provider	Peer
Customer	Yes	Yes	Yes
Provider	Yes	No	No
Peer	Yes	No	No

Problem Set 4 Question 2

b) What possible valley-free paths exist from AS11 to AS10?

- AS11 \rightarrow AS7 \rightarrow AS6 \rightarrow AS10
- AS11 \rightarrow AS7 \rightarrow AS4 \rightarrow AS3 \rightarrow AS6 \rightarrow AS10
- AS11 \rightarrow AS7 \rightarrow AS4 \rightarrow AS2 \rightarrow AS6 \rightarrow AS10

Problem Set 4 Question 2

b) Which path will be used for sending traffic?

provider

peer
peer

- $\mathrm{AS11} \rightarrow \mathrm{AS} 7 \rightarrow \mathrm{AS6} \rightarrow$ AS10
- AS11 \rightarrow AS7 \rightarrow AS4 \rightarrow AS3 \rightarrow AS6 \rightarrow AS10
- AS11 \rightarrow AS7 \rightarrow AS4 \rightarrow AS2 \rightarrow AS6 \rightarrow AS10

Problem Set 4 Question 3

a) Nodes prefer their top path. At t=0, any node with a direct path to 0 chooses that path and starts running BGP. What messages get sent?

Problem Set 4 Question 3

a) Nodes prefer their top path. At $\mathrm{t}=\mathbf{0}$, any node with a direct path to 0 chooses that path and starts running BGP. What messages get sent?

Problem Set 4 Question 3

a) Nodes prefer their top path. At $\mathrm{t}=\mathbf{0}$, any node with a direct path to 0 chooses that path and starts running BGP. What messages get sent?

Problem Set 4 Question 3

b) Now we add another possible path from node 3 to node 0 to obtain the following network. What messages get sent?

Problem Set 4 Question 3

b) Now we add another possible path from node 3 to node 0 to obtain the following network. What messages get sent?

Problem Set 4 Question 3

b) Now we add another possible path from node 3 to node 0 to obtain the following network. What messages get sent?

Problem Set 4 Question 3

c) Now we update the latencies of some of the links. What messages get sent? Does the network converge?

Problem Set 4 Question 3

c) Now we update the latencies of some of the links. What messages get sent? Does the network converge?

$\|c\| c\|c\| c\|c\| c\|c\| c\|c\| c \mid$

Problem Set 4 Question 3

c) Now we update the latencies of some of the links. What messages get sent? Does the network converge?

Problem Set 4 Question 3

c) Now we update the latencies of some of the links. What messages get sent? Does the network converge?

Problem Set 4 Question 3

c) Now we update the latencies of some of the links. What messages get sent? Does the network converge?

Problem Set 4 Question 3

c) Now we update the latencies of some of the links. What messages get sent? Does the network converge?

Problem Set 4 Question 3

c) Now we update the latencies of some of the links. What messages get sent? Does the network converge?

Problem Set 4 Question 4

a) What is the 32-bit binary equivalent of 223.1.3.27?

11011111000000010000001100011011

Problem Set 4 Question 4

a) Consider a datagram network with 8-bit host addresses. A router using longest prefix matching has the following forwarding table. For each interface, give the range of host addresses, and the number of addresses in the range.

Prefix Match	Interface
00	0
010	1
011	2
10	2
11	3

Interface 0:
00000000 - 00111111 (64 addresses)
Interface 1:
01000000 - 01011111 (32 addresses)
Interface 2:
$01100000-01111111$
$10000000-10111111$ (96 addresses)
Interface 3:
11000000 - 11111111 (64 addresses)

