Path-Vector Protocol
(BGP)

Rachit Agarwal
Goals for Today’s Lecture

• Dive deeper into Inter-domain routing: Border-Gateway Protocol

• Keep sanity: very different from everything we have seen so far
Recap from last lecture
Recap: Three requirements for addressing

- **Scalable routing**
 - How must state must be stored to forward packets?
 - Desired: Small \#routing entries (less than one entry per host per switch)
 - How much state needs to be updated upon host arrival/departure?
 - Desired: Small \#updates (less than one update per switch per host change)

- **Efficient forwarding**
 - How quickly can one locate items in routing table?

- **Host must be able to recognize packet is for them**
Recap: Using L2 (MAC) names does not enable scalable routing

- **Scalable routing**
 - How much state to forward packets?
 - One entry per host (at each switch)
 - How much state updated for each arrival/departure?
 - One entry per host (at each switch)

- **Efficient forwarding**
 - Exact match lookup on MAC addresses (exact match is easy!)

- **Host must be able to recognize the packet is for them**
 - MAC address does this perfectly
Recap: Today’s Addressing (CIDR)

- Classless Inter-domain Routing

- Idea: Flexible division between network and host addresses

- Prefix is network address

- Suffix is host address

Example:

- 128.84.139.5/23 is a 23 bit prefix with:
 - First 23 bits for network address
 - Next 9 bits for host addresses: maximum 2^9 hosts
 - All hosts within the network have the same first 23 bits (x.y.z.*)

- Terminology: “Slash 23”
Recap: How does CIDR meet our requirements?

- To understand this, we need to understand the routing on the Internet
- And to understand that, we need to understand the Internet
Recap: What does a computer network look like?

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“Border Routers”

An “end-to-end” route

“Interior Routers”
Recap: Autonomous Systems (AS)

- An AS is a network under a single administrative control
 - Currently over 30,000
 - Example: AT&T, France Telecom, Cornell, IBM, etc.
 - A collection of routers interconnecting multiple switched Ethernets
 - And interconnections to neighboring ASes

- Sometimes called “Domains”

- Each AS assigned a unique identifier
 - 16 bit AS number
Recap: IP addressing -> Scalable Routing?

France Telecom

AT&T a.0.0.0/8

LBL a.b.0.0/16

Cornell a.c.0.0/16

a.c.*.* is this way

a.b.*.* is this way
Recap: IP addressing -> Scalable Routing?

Can add new hosts/networks without updating the routing entries at France Telecom
Recap: IP addressing -> Scalable Routing?

ESNet must maintain routing entries for both a.*.*.* and a.c.*.*.
Given this addressing,

How do we think about Inter-domain routing protocols?
Administrative Structure Shapes Inter-domain Routing

- ASes want freedom to pick routes based on policy
 - “My traffic can’t be carried over my competitor’s network!”
 - “I don’t want to carry A’s traffic through my network!”
 - Cannot be expressed as Internet-wide “least cost”

- ASes want autonomy
 - Want to choose their own internal routing protocol
 - Want to choose their own policy

- ASes want privacy
 - Choice of network topology, routing policies, etc.
Choice of Routing Algorithm

- Link State (LS) vs. Distance Vector (DV)

- LS offers no privacy — broadcasts all network information
- LS limits autonomy — need agreement on metric, algorithm

- DV is a decent starting point
 - Per-destination updates by intermediate nodes give us a hook
 - But, wasn’t designed to implement policy
 - … and is vulnerable to loops if shortest paths not taken

The “Border Gateway Protocol” (BGP) extends Distance-Vector ideas to accommodate policy
Business Relationships Shape Topology and Policy

- Three basic kinds of relationships between ASes
 - AS A can be AS B’s *customer*
 - AS A can be AS B’s *provider*
 - AS A can be AS B’s *peer*

- Business implications
 - Customer *pays* provider
 - Peers *don’t pay* each other
 - Exchange roughly equal traffic
Business Relationships

Relations between ASes
- provider
- peer
- customer
- peer

Business Implications
- Customers pay provider
- Peers don’t pay each other
Why Peer?

Relations between ASes
- provider
- customer
- peer
- peer

Business Implications
- Customers pay provider
- Peers don’t pay each other

E.g., D and E talk a lot
Peering saves B and C money
Routing Follows the Money

- ASes provide “transit” between their customers
- Peers do not provide transit between other peers
● An AS only carries traffic to/from its own customers over a peering link
Inter-domain Routing: Setup

- Destinations are IP prefixes (12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol
 - Implemented by AS border routers
Border Gateway Protocol

An AS advertises its best routes to one or more IP prefixes.

Each AS selects the "best" route it hears advertised for a prefix.

Sound familiar?
BGP Inspired by Distance Vector

- Per-destination route advertisements
- No global sharing of network topology
- Iterative and distributed convergence on paths
- But, four key differences
BGP vs. DV

(1) BGP does not pick the shortest path routes!

- BGP selects route based on policy, not shortest distance/least cost

Node 2 may prefer 2, 3, 1 over 2, 1

- How do we avoid loops?
BGP vs. DV

(2) Path-vector Routing

- **Idea**: advertise the entire path
 - **Distance vector**: send *distance metric* per dest. \(d\)
 - **Path vector**: send the *entire path* for each dest. \(d\)
Loop Detection with Path-Vector

- Node can easily detect a loop
 - Look for its own node identifier in the path
- Node can simply discard paths with loops
 - e.g. node 1 sees itself in the path 3, 2, 1

```
3 ----> 2 ----> 1

"d: path (2,1)"
"d: path (1)"
"d: path (3,2,1)"
```
BGP vs. DV

(2) Path-vector Routing

- Idea: advertise the entire path
 - Distance vector: send *distance metric* per dest. d
 - Path vector: send the *entire path* for each dest. d

- Benefits
 - Loop avoidance is easy
 - Flexible policies based on entire path
(3) Selective Route Advertisement

- For policy reasons, an AS may choose not to advertise a route to a destination.
- As a result, reachability is not guaranteed even if the graph is connected.

Example: AS#2 does not want to carry traffic between AS#1 and AS#3.
(4) BGP may aggregate routes

- For scalability, BGP may aggregate routes for different prefixes
BGP Outline

- BGP Policy
 - Typical policies and implementation

- BGP protocol details

- Issues with BGP
Policy:

Imposed in how routes are selected and exported

- **Selection**: Which path to use
 - Controls whether / how traffic leaves the network
- **Export**: Which path to advertise
 - Controls whether / how traffic enters the network
Typical Selection Policy

- In decreasing order of priority:
 1. Make or save money (send to customer > peer > provider)
 2. Maximize performance (smallest AS path length)
 3. Minimize use of my network bandwidth (“hot potato”)
 4. ...
Typical Export Policy

<table>
<thead>
<tr>
<th>Destination prefix advertised by...</th>
<th>Export route to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Everyone (providers, peers, other customers)</td>
</tr>
<tr>
<td>Peer</td>
<td>Customers</td>
</tr>
<tr>
<td>Provider</td>
<td>Customers</td>
</tr>
</tbody>
</table>

Known as the “Gao-Rexford” rules
Capture common *(but not required!)* practice