CS4450

Computer Networks: Architecture and Protocols

Lecture 7: Link Layer

CSMA/CD

“Why” Frames

“Why” Switched Ethernet

Rachit Agarwal
Announcements

- Problem set 2 solutions out today
 - First four questions included in the first exam

- Practice prelim released today
 - Hard to “closely” reflect the actual exam, but should be close
 - Solutions released by Friday
Goals for Today’s Lecture

• Dive deep into Link layer design
 • Finish the core link layer protocol: CSMA/CD
 • Why Frames? — Implementing Link Layer on top of Physical Layer
 • Why Switched Ethernet? — Understanding scalability problems

• Next lecture: THE Spanning Tree Protocol
Recap from last lecture
Recap: Data Link Layer

- Communication Medium
 - Point-to-point
 - The high-level ideas discussed so far were for point-to-point
 - Broadcast
 - Original design of Link layer protocols
 - More recent versions have moved to point-to-point
 - Today, we will discuss why so!

- Network Adapters (e.g., NIC — network interface card)
 - The hardware that connects a machine to the network
 - Has a “name” — MAC (Medium access control) address
Recap: Sharing a broadcast channel

- **Context:** a shared broadcast channel
 - Must avoid/handle having multiple sources speaking at once
 - Otherwise collisions lead to garbled data
- Need **distributed algorithm** for sharing channel
- Algorithm determines **when** and **which** source can transmit
Questions?
Techniques for sharing a broadcast channel

• Context: a shared broadcast channel
 • Must avoid/handle having multiple sources speaking at once
 • Otherwise collisions lead to garbled data
 • Need distributed algorithm for sharing channel
 • Algorithm determines when and which source can transmit

• Three classes of techniques
 • Frequency-division multiple access: coordinated sharing in space
 • Time-division multiple access: coordinated sharing in time
 • Random access: uncoordinated sharing
 • Detect collisions, and if needed, recover from collisions
 • Carrier Sense Multiple Access (CSMA)
Frequency-Division Multiple Access (FDMA)

- Frequency sharing
 - Divide the channel into **frequencies**
 - Every source is assigned a subset of frequencies
 - And transmits data only on its assigned frequency

- Goods: no collisions

- Not-so-good:
 - A source may have nothing to send (frequency wasted)
 - Interference may cause disruption
 - Hard to implement for wired networks

- Used in many wireless networks
 - E.g., radio
Time-Division Multiple Access (TDMA)

- **Time sharing**
 - Divide time into **slots**
 - Divide data into **frames**
 - Such that a frame can be transmitted in one slot
 - **Every source is assigned a subset of slots**
 - And transmits a frame only in its assigned slot

- **Goods: no collisions**

- **Not-so-good: Underutilization of resources**
 - During a slot, a source may have nothing to send
 - When the source has something to send, wait for its slot
Random Access

- Bob Metcalfe:
 - Xerox PARC
 - Visits Hawaii, and gets the idea
 - Shared wired medium
Life lesson:
If you want to invent great things,
go to Hawaii :-)

Link Layer (Media Access Control, or MAC) Protocol

- When source has a frame to send
 - Transmit at full bandwidth
 - No a priori coordination among nodes

- Two or more transmitting sources => collision
 - Frame lost

- Link-layer protocol specifies:
 - How to detect collision
 - How to recover from collisions
CSMA (Carrier Sense Multiple Access)

- **CSMA:** listen before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy: defer transmission

- Human analogy: don’t interrupt others!

- Does this eliminate all collisions?
 - **No,** because of nonzero propagation delay

- Solution:
 - Include a **Collision Detection (CD) mechanism**
 - If a collision detected
 - Retransmit
CSMA/CD (Carrier Sense Multiple Access, Collision Detection)

- CSMA/CD: carrier sensing
 - **Collisions detected within short time**
 - Colliding transmissions aborted, reducing wastage

- Collision detection easy in wired (broadcast) LANs
 - Compare transmitted and received signals

- Collision detection difficult in wireless LANs
CSMA/CD
Once a collision is detected ...

- **When should the frame be retransmitted?**
 - Immediately?
 - Every NIC would start sending immediately
 - Collision again!
 - Take turns?
 - Back to time division multiplexing
 - Problem?
 - Underutilization
Carrier Sense: continuously listen to the channel
 - If idle: start transmitting
 - If busy: wait until idle

Collision Detection: listen while transmitting
 - No collision: transmission complete
 - Collision: abort transmission

When to retransmit?: exponential back off
 - After collision, transmit after “waiting time”
 - After k collisions, choose “waiting time” from \{0, ..., 2^{k-1}\}
 - Exponentially increasing waiting times
 - But also, exponentially larger success probability
CSMA/CD—Exponential Back-off: An example

Attempt 1: Suppose a collision happens

Attempt 2: Four possibilities

Success with Probability = 0.5
Questions?
Group Exercise:

What is the success probability in attempt 3?

Answer: 0.75
Why Frames?
(Layering: Link Layer on top of Physical Layer)
Building Link Layer on top of Physical Layer

- Physical layer sends/receives bits on a link, and forwards to link layer

- View at the destination side physical layer:
 01010110011111101111101111100101000111

- Challenge: how to take the above bits and convert to:
 01010110011111101111101111100101000111

- **Problem**: how does the link layer separate data into correct “chunks”?
 - Chunks belonging to different applications

- Data link layer **interfaces** with **physical layer** using **frames**
 - Implemented by the network adaptor
 - Finally: **What are these frames?**
Identifying start/end of frames: Sentinel Bits

- Delineate frame with special “sentinel” bit pattern
 - e.g., 01111110 -> start, 01111111 -> end

![Frame contents]

- Problem: what if the sentinel occurs within the frame?

- Solution: **bit stuffing**
 - Sender always inserts a 0 after five 1s in the frame content
 - Receiver always removes a 0 appearing after five 1s
When Receiver sees five 1s...

01111110 Frame contents 01111111

- If next bit is 0, remove it, and begin counting again
 - Because this must be a stuffed bit
 - we can’t be at beginning/end of frame (those had six/seven 1s)

- If next bit is 1 (i.e., we have six 1s) then:
 - If following bit is 0, this is the start of the frame
 - Because the receiver has seen 01111110
 - If following bit is 1, this is the end of the frame
 - Because the receiver has seen 01111111
Example: Sentinel Bits

• Original data, including start/end of frame:
 01111110011111101111101111100101111111

• Sender rule: five 1s -> insert a 0

• After bit stuffing at the sender:
 01111110011111010111110011111000101111111

• Receiver rule: five 1s and next bit 0 -> remove 0
 01111110011111101111101111100101111111
Ethernet “Frames”

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Dest. Address</th>
<th>Source Address</th>
<th>Data</th>
<th>CRC</th>
</tr>
</thead>
</table>

- **Preamble:**
 - 7 bytes for clock synchronization
 - 1 byte to indicate start of the frame

- **Names:** 6 + 6 bytes (MAC names/addresses)

- **Protocol type:** 2 bytes, indicating higher layer protocol (e.g., IP)

- **Data payload:** max 1500 bytes, minimum 46 bytes

- **CRC:** 4 bytes for error detection
What about source/destination Addresses?

- Frames are at Layer-2
 - Thus, use Layer-2 addresses (MAC names/addresses)

- MAC address
 - Numerical address associated with the network adapter
 - Flat namespace of 6 bytes (e.g., 00-15-C5-49-04-A9 in HEX)
 - Unique, hard coded in the adapter when it is built

- Hierarchical Allocation
 - Blocks: assigned to vendors (e.g., Dell) by IEEE
 - First 24 bits (e.g., 00-15-C5-**-**-**)
 - Adapter: assigned by the vendor from its block
 - Last 24 bits
Questions?
Putting it all together
(Traditional Ethernet)
Traditional Ethernet

- (Source) Link layer receives data from the network layer (more later)
- (Source) Link layer divides data into frames
 - How does it know source/destination MAC names?
 - Source name is easy ... destination name is tricky (more later)
- (Source) Link layer passes the frame to physical layer
 - Frames up the frames (using sentinel bits)
 - And broadcasts on the broadcast Ethernet
- (EACH) physical layer regenerates the frame...
 - And sends it up to the (destination) link layer If and only if:
 - destination name matches the receiver’s MAC name
 - Or, the destination name is the broadcast address (FF:FF:FF:FF:FF:FF)
• Ethernet is “plug-n’play”
 • A new host plugs into the Ethernet is good to go
 • No configuration by users or network operators
 • Broadcast as a means of bootstrapping communication
Performance of CSMA/CD

• Time spent transmitting a frame (collision)
 • Proportional to distance \(d \); why?

• Time spent transmitting a frame (no collision)
 • Frame length \(p \) divided by bandwidth \(b \)

• Rough estimate for efficiency (\(K \) some constant)

\[
E \sim \frac{p}{b + Kd}
\]

• Observations:
 • For large frames AND small distances, \(E \sim 1 \)
 • Right frame length depends on \(b, K, d \)
 • As bandwidth increases, \(E \) decreases
 • That is why high-speed LANs are switched
Questions?