CS 4450, 5456

Computer Networks:
Architecture and Protocols

Rachit Agarwal
#1: What do I mean by “computer networks”?
What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

• **Three important components:**
 • Set of network elements, connected together:
 • Core “infrastructure”
 • Protocols:
 • Needed to use the network
 • Purpose:
 • Sharing resources at the end hosts (computing devices)
What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts.
What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

- **Three important components:**
 - Set of network elements, connected together:
 - Core “infrastructure”
 - Protocols:
 - Needed to use the network
 - Purpose:
 - Sharing resources at the end hosts (computing devices)
Questions?
#2: What do computer networks do?
What do computer networks do?

A computer network delivers data between the end points

• One and only one task: Delivering the data

• Read that sentence again. Remember it forever.

• This delivery is done by:
 • Chopping the data into packets
 • Sending individual packets across the network
 • Reconstructing the data at the end points

• That is all! This course:
 • Evolution of three components of computer networks!
 • Infrastructure, protocols, purpose
 • Why the *&^#@ has it taken 50 years of research (and counting) to design a data delivery system
Data delivery as a fundamental goal

- Support the logical equivalence of Interprocess Communication (IPC)
 - Mechanism for “processes on the same host” to exchange messages

- Computer networks allow “processes on two different hosts” to exchange messages

- Clean separation of concerns
 - Computer networks deliver data
 - Applications running on end hosts decide what to do with the data

- Keeps networks simple, general and application-agnostic
Questions?
#3: What do computer networks look like?
What do computer networks look like?

Three Basic components

• **End hosts**: they send/receive packets

• **Switches/Routers**: they forward packets

• **Links**: connect end hosts to switches, and switches to each other
What do computer networks look like?

End hosts, switches/routers, links
#4: Why study computer networks?
Why study computer networks?

What would the world look like without the Internet?

• Let's see
Why study computer networks?

#1: Has transformed and more importantly, is transforming everything!

- **Industry**: core to and creator of many large and influential companies
 - Google, Facebook, Apple, Cisco, Broadcom, AT&T, Verizon, Akamai
- **Communication**
 - Email, messenger, phones, VoIP, ...
- **Travel**
 - AirBnB, Uber, Maps, ...
- **Health**
 - Digital health, remote diagnostics,
- **Entertainment**
 - Netflix, news
- **Relationships**
 - Okcupid, Tinder, ...
Why study computer networks?

#2: To learn how to design for tussle!

• Federated System
 • The Internet interconnects different networks
 • >18000 Internet Service Providers (ISPs)
 • How do you interconnect distrustful and competing entities?
 • Constant tussle between business and technical factors!
Why study computer networks?

#3: To learn how to design for scale!

- **Tremendous scale**
 - 51% of world population
 - 1.24 trillion unique web pages
 - Every **second**, approximately
 - > 2 million emails
 - > 40000 Google search queries
 - > 6000 Tweets

- **Introduced the phrase “Internet-scale”**
Why study computer networks?

#4: To learn how to design for **diversity**!

- **Communication latency**: Microseconds to seconds
- **Bandwidth**: 1 Kilobits/second to 100 Gigabits/second
- **Packet Loss**: 0-90%
- **Technology**: Wireless, satellite, optical, copper, ...
- **End hosts**: Sensors, cell phones, computers, servers, datacenters, ...
- **Applications**: www, voice, video, gaming, remote medicine
- **Trust models**: selfish (users), malicious (attackers), greedy (companies), ...

And yet, everything needs to work in tandem!
Why study computer networks?

#5: To learn how to design for **evolution**!

<table>
<thead>
<tr>
<th></th>
<th>1970</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>50 kbps</td>
<td>100+ Gbps</td>
</tr>
<tr>
<td>#End hosts</td>
<td>< 100 computers</td>
<td>8 billion +</td>
</tr>
<tr>
<td>Applications</td>
<td>Telnet and File transfer</td>
<td>!!</td>
</tr>
</tbody>
</table>

We have no clue what 2025 would be like!
Why study computer networks?

#6: To learn how to think “architecture rather than engineering”!

- The early pioneers came up with a solution that has lasted for 40 years!
 - Almost unchanged!!! A true success story of “thinking differently”!!
 - Brilliant in conception; sometimes weak in execution
- Several **architectural principles** emerged
 - Decentralization [All lectures]
 - “Packets” [Lecture #2]
 - Statistical multiplexing [Lecture #2]
 - The end-to-end principle [Lecture #3, #6+]
 - Layering [Lecture #3, #6+]
 - Best effort service [Lecture #4, #6+]
 - Narrow waist interface [Lecture #6]
Why study computer networks?

#6: To learn how to think “architecture rather than engineering”!

• The early pioneers came up with a solution that has lasted for 40 years!
 • Almost unchanged!!! A true success story of “thinking differently”!!
 • Brilliant in conception; sometimes weak in execution
 • Several architectural principles emerged

Computer networks offer us a lesson on how to “reason” through the design of a complex, diverse, ever-evolving, failure-prone system
 • What are our goals and constraints? How to prioritize them?
 • How do we decompose a problem into smaller components?
 • How to partition the functionality across multiple components?
 • What are the design tradeoffs?

In short, how to architect a system!
#5: What is this course about?
What is this course **not** about?

- There are many kinds of computer networks (and technologies)
 - Telephone (landline) networks
 - Cellular networks
 - Wireless networks
 - Optical networks
 - Infiniband
 -

- And many applications of these computer networks
 - World Wide Web
 - Multimedia streaming
 - Social networks
 - Email/audio/video messaging
 - Search
 -
What is this course about?

Architectural principles, design goals and performance objectives in wired networks

• **What tasks get done?**
 - What is delivered (packets, files, ...)?
 - What are the semantics (reliability, ordering, ...)?

• **Where do tasks get done?**
 - At the network elements? At the end-hosts?
 - How do end hosts interface with network elements?
 - How do different network elements interface with each other?

• **How tasks get done?**
 - What protocols and algorithms do each of these use?
 - How to achieve various performance objectives (latency, etc.)?
What is this course about?

Architectural principles, design goals and performance objectives in wired networks

• Mostly drawing examples from the Internet
 • Not a particular kind of network
 • Not just another technology on the list
 • Ties different networks together

• Why Internet?
 • Has similar goals as individual network technologies
 • Speed, Cost, Reliability, ...
 • Has an additional fundamental goal
 • Ability to connect all computer networks (and technologies)
 • Leads to myriad of new challenges
Questions?
#6: What is the course workload, grading policies, etc.?
Course workload

- Problem set, one every two weeks
 - For you to practice questions; solutions available after one week

- Four projects
 - To gain hands-on experience for people who are interested

- In-class surprise quizzes
 - There may be no quiz, or there may be a quiz per lecture
 - Pay attention, regularly read material, attend lectures

- Three exams

- Class feedback

- **New (5456):** some form of project/survey
Course workload

• My courses tend to be “heavy”: require regular attention
 • You have been warned!

• My exams tend to be hard
 • You have been warned!

• Quizzes will be simple
 • Pay attention, regularly read material, attend lectures
 • Solve problem sets regularly
#7: How will this course be organized?
Course organization

• Prerequisites
 • This is a senior-level course
 • We expect knowledge of algorithms, probability, data structures
 • Review your past courses as needed

• Textbook
 • Computer Networks: A systems approach
 • 5th edition, but others are fine too (translate sections, etc.)
 • We will not follow its order of presentation
 • Instead, use it as a reference for individual topics
 • e-version of the book available via Cornell library

• Advanced readings
 • If you get curious about a topic and want to read more
 • Anything not covered in the class will not be in exams/quizzes
Interaction with course staff

• Ed Discussions
 • Not a substitute for classes

• Office hours
 • We want to choose timings that suit you; fill the poll (check email)
 • We will announce office hours (time/location) on Ed Discussions
 • More hours by appointment

• LOST sessions
 • We understand that students sometime lose track of the course
 • Spend the rest of the semester “catching up”
 • Send us an email; we’ll help you catch up in 1-1 sessions
 • No need to give us a proof; we are here to help
 • But we will keep track to avoid abuse
 • Secure, private email address: cs4450-prof@cornell.edu